
Functional Logic Overloading

Matthias Neubauer Peter Thiemann
Universität Freiburg

{neubauer,thiemann}@informatik.uni-freiburg.de

Martin Gasbichler Michael Sperber
Universität Tübingen
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ABSTRACT
Functional logic overloading is a novel approach to user-
defined overloading that extends Haskell’s concept of type
classes in significant ways. Whereas type classes are concep-
tually predicates on types in standard Haskell, they are type
functions in our approach. Thus, we can base type infer-
ence on the evaluation of functional logic programs. Func-
tional logic programming provides a solid theoretical foun-
dation for type functions and, at the same time, allows for
programmable overloading resolution strategies by choosing
different evaluation strategies for functional logic programs.
Type inference with type functions is an instance of type
inference with constrained types, where the underlying con-
straint system is defined by a functional logic program. We
have designed a variant of Haskell which supports our ap-
proach to overloading, and implemented a prototype front-
end for the language.

1. INTRODUCTION
Since the invention of type classes more than a decade

ago [49], every year has seen astonishing new applications
and interesting extensions of the original idea. Among these
extensions are constructor classes [26], multi-parameter type
classes [43], implicit parameters [35], and functional de-
pendencies [31]. A number of applications of type classes
critically depend on extensions to properly resolve ambigui-
ties [28, 48]. Moreover, the various Haskell implementations
feature a number of additional ad-hoc extensions.

Among the extensions, functional dependencies effectively
allow writing logic programs at the type level [16, 37] and
running them at type-inference time. However, these type-
level programs are often awkward to write, and the introduc-
tion of functional dependencies poses additional pragmatic
problems such as the resolution of overlapping instances
which interact poorly with functional dependencies [38].

The upshot is that no single approach to constrained poly-
morphism and overloading is sufficiently general and effec-
tive to be applicable in all situations. Therefore, we pro-
pose making the overloading machinery programmable. The
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main device in our proposal is a conceptual shift from type-
classes-as-predicates to type-classes-as-functions. Therefore,
constraints in the resulting type system are now constraints
in a functional logic language [18] at the type level. Thus,
the study of type-level programs can immediately benefit
from the large body of published knowledge on functional
logic programming. This is in sharp contrast to the imple-
mented extensions of Haskell’s type classes, which have been
developed incrementally and sometimes without careful in-
tegration. For instance, some systems implement functional
dependencies as well as overlapping instances even though
there is no theoretical work that investigates their interac-
tion.

Functional logic programming, just like functional pro-
gramming, features a variety of evaluation strategies. There
are two main approaches, residuation and narrowing, which
exist in many different variants, each of which has specific
tradeoffs [18]. Fortunately, Hanus’s evaluation model based
on definitional trees suits all evaluation strategies [19]. Since
there are similarly diverging requirements in type-level pro-
gramming for resolution of overloading, it seems natural to
employ a parameterized model to specify its semantics.

Contributions.We extend Haskell’s type class system with
the following features:

• The resolution of overloading is specified using func-
tions at the type level.

• Type functions are defined by a terminating (condi-
tional) term rewriting system augmented with (mem-
ber) value definitions. The responsibility of making
the term rewriting system terminating rests with the
programmer, as with most approaches that make type
checking programmable.

• The type-level semantics is clearly specified by attach-
ing a deterministic evaluation strategy for functional
logic programs to each type function. This has two
important consequences:

1. Overloading resolution is deterministic. Thus, no
coherence problems arise.

2. Different flavors of overloading resolution are pro-
grammable by choosing an evaluation strategy.

• Our system extends the scope of Haskell-style type
class systems by treating overlapping instances in com-
bination with functions (which has a number of signif-
icant applications [28]) and by being able to resolve
Ada-style overloading.



On the technical side, our system is based on HM(X) [41],
a framework for constrained type inference. We instanti-
ate HM(X) with a suitable term constraint system and de-
fine constraint simplification rules, that extend the rule sys-
tems for E-unification [11]. We show that simplification is
sound and complete. The resulting type inference algorithm
is inherently incomplete because not all evaluation strate-
gies (residuation, in particular) yield complete E-unification
procedures [17]. A companion technical report [12] further
extends our instance of HM(X) towards overloading resolu-
tion by formalizing a dictionary translation for it.

On the practical side, we have implemented a compiler
frontend for a dialect of Haskell. Using our implementation,
we have validated a number of applications (see Section 2)
ranging from simple dependent types through polymorphic
extensible records with first-class labels to Ada-style over-
loading. Each application requires a particular type-level
evaluation strategy (outermost residuation, residuation with
most-specific matching, and outermost narrowing), which
demonstrates the usefulness of a parameterized strategy.

Overview.The following section presents a number of ex-
amples for our variant of Haskell which make intrinsic use of
type-level functions. Section 3 introduces some notational
preliminaries. Section 4 gives an overview of the HM(X)
framework. The following section describes the constraint
system which forms the basis of our type system. Section 6
discusses possible evaluation strategies for type-level func-
tion applications which occur during constraint simplifica-
tion. It also shows how these strategies evaluate the exam-
ples from Section 2. Section 7 contains some notes on our
prototype implementation. Finally, we discuss related work
in Section 8 and conclude.

2. EXAMPLES
Four simple examples demonstrate our type system and

our variant of Haskell: a type-safe sprintf function, an im-
plementation of records with first-class labels, a function en-
coding type equality, and the Ada-style overloading of the
operator +. We assume basic familiarity with Haskell. The
standard resolution strategy is based on outermost residua-
tion (see Section 6.1).

2.1 Format
The sprintf function from the C standard library is an

example of an unsafe function that could be made type-safe
by a dependent type [4]: The first parameter of sprintf is
a format specifier which determines the number and type of
the remaining parameters. The type-level function SPRINTF
computes the type of the remaining parameters from the for-
mat specifier [38]. In our variant of Haskell, format specifiers
cannot simply be strings with control characters but rather

String constants or values from the following datatypes:1

data I f = I f
data C f = C f
data S f = S String f

The format specifier (using $) for function application)

fmt :: S (I (S (C String)))

fmt = S "Int: " $ I $ S ", Char: " $ C $ "."

1This particular application is also implementable using
only ML-style polymorphism [9].

means “The literal string ‘Int: ’ followed by an integer fol-
lowed by the literal string ‘, Char: ’ followed by a charac-
ter and terminated by a period.” The following declaration
specifies the type-level function SPRINTF together with an as-
sociated member value sprintf1. The overloaded sprintf1
function accepts a prefix string, a format specifier, and cor-
responding further arguments:

class SPRINTF (f :: *) :: * where
sprintf1 :: String -> f -> SPRINTF f

instance SPRINTF String = String where
sprintf1 prefix str = prefix ++ str

instance SPRINTF (I a) = Int -> SPRINTF a where
sprintf1 prefix (I a) =

\i -> sprintf1 (prefix ++ show i) a

instance SPRINTF (C a) = Char -> SPRINTF a where
sprintf1 prefix (C a) =

\c -> sprintf1 (prefix ++ [c]) a

instance SPRINTF (S a) = SPRINTF a where
sprintf1 prefix (S str a) =

sprintf1 (prefix ++ str) a

The first line says that SPRINTF maps types of format spec-
ifiers, f, of kind * to results of kind *. The lines following
the where keyword are type declarations of member values
associated to SPRINTF. There is only one member function
here, sprintf1.

The first instance states that a format specifier of type
String leads to a member value with the same result type.
The value-level member declaration of sprintf1 for this case
follows. In case of a format specifier starting with the I type
constructor, the type-level function is defined recursively:
the result type of sprintf1 is a function, the parameter of
this function is of type Int, and the return value type arises
from another recursive call to SPRINTF. Again, the corre-
sponding member value follows. The two remaining cases
for type expressions starting with C and S are analogous.

The main entry point, sprintf, supplies an empty prefix
to sprintf1:

sprintf :: (SPRINTF m =:= o) => m -> o
sprintf = sprintf1 ""

It is only applicable to values of types m and o so that the
constraint SPRINTF m =:= o is satisfied. The operator =:=

specifies strict equality of its left-hand side, the application
of the type-level function SPRINTF to m, and its right-hand
side, o.

The type of sprintf fmt is now Int -> Char -> String.

When applied to an integer2 and a character, the result is

> sprintf fmt 42 ’x’
"Int: 42, Char: x."

2.2 Polymorphic Extensible Records with
First-Class Labels

We implement records as heterogeneous lists on the type
and on the data level. (Since order is important, the pro-
grammer must normalize records upon construction.) Two
type constructors EMPTY and CONS create record types. A
record type is an association list at the type level: it maps
a record label (also a type) to the type of the corresponding
record field. The representation at the value level is analo-
gous: two value constructors EMPTY and CONS create record
values; the representation of a record is an association list

2Throughout, we assume that numeric literals have type
Int.



mapping record labels to field values. Thus, the structures
of record types and record values as well as of record type
labels and record value labels are identical. As this kind
of situation is typical in type-level programming, there is a
special lifted declaration which creates a type constructor
and a value constructor at the same time (the comments
show the expansions):

lifted EMPTY -- data EMPTY = EMPTY
lifted CONS x xs -- data CONS x xs = CONS x xs

lifted Lx -- data Lx = Lx
lifted Ly -- data Ly = Ly

Lx and Ly are two possible labels, modeled by singleton
types.

A type class EQUAL models equality of record labels:

lifted TRUE
lifted FALSE

class EQUAL (l1 :: *) (l2 :: *) :: *
reifying equal
instance EQUAL Lx Lx = TRUE
instance EQUAL Lx Ly = FALSE
instance EQUAL Ly Lx = FALSE
instance EQUAL Ly Ly = TRUE

The first line specifies the kinds of the arguments to EQUAL

as well as the return kind. The reifying clause says that
EQUAL has a member equal which mirrors the EQUAL function
at the value level; this is possible as all types involved have
lifted declarations.

The explicit definition of equal looks like this:

class EQUAL (l1 :: *) (l2 :: *) :: * where
equal :: l1 -> l2 -> EQUAL l1 l2

instance EQUAL Lx Lx = TRUE where
equal Lx Lx = TRUE

instance EQUAL Lx Ly = FALSE where
equal Lx Ly = FALSE

instance EQUAL Ly Lx = FALSE where
equal Ly Lx = FALSE

instance EQUAL Ly Ly = TRUE
equal Ly Ly = TRUE

The SELECT class performs field selection. It relies on a type-
level version of the Maybe a type (NOTHING and JUST x) as
well as on a type-level conditional (COND).

lifted NOTHING
lifted JUST x

class SELECT (f :: *) (r :: *) :: *
reifying select
instance SELECT f EMPTY = NOTHING
instance SELECT f (CONS (f’, v) r) =

COND (EQUAL f f’) (JUST v) (SELECT f r)

class COND (t :: *) (c :: *) (a :: *) :: *
reifying cond
instance COND TRUE x y = x
instance COND FALSE x y = y

The unwrap function allows us to define a modified field
selection function:

unwrap (JUST t) = t

sel :: (SELECT f r =:= JUST t) => f -> r -> t
sel f r = unwrap (select f r)

Again, the sel function carries a constrained type: It is only
applicable for types f, r, and t which satisfy the constraint
SELECT f r =:= JUST t.

The SELECT type-function checks whether a given field is
present. The add operation adds a new field to a record. It
requires that the field is not yet present.

add :: (SELECT f r =:= NOTHING)
=> r -> f -> v -> CONS (f, v) r

add record field value = CONS (field, value) record

The remove class removes a field from a record:

class REMOVE (f :: *) (r :: *) :: *
reifying remove
instance REMOVE f EMPTY = EMPTY
instance REMOVE f (CONS (f’, v) r) =

COND (EQUAL f f’) r (CONS (f’, v) (REMOVE f r))

With this definition, removing a field from a record always
succeeds, regardless of the actual presence or absence of such
a field. If the presence of the field is required to remove it,
then the following typing should be used with the remaining
definitions unchanged:

rmv :: (SELECT f r =:= JUST t) => f -> r -> REMOVE f r
rmv = remove

An example script demonstrates the encoding. Record fields
are polymorphic.

> add EMPTY Lx 42 :: CONS (Lx, Int) EMPTY
> add EMPTY Lx ’c’ :: CONS (Lx, Char) EMPTY

Existing fields cannot be added:

> add (add EMPTY Lx 42) Lx 0
-- ***ERROR***

Field labels are first class. The constraint (SELECT ...)
checks that field labels are different. Application to different
labels succeeds and application to equal labels fails.

> \l1 l2 -> add (add EMPTY l1 42) l2 "x" ::
(SELECT f (CONS (f1, Int) EMPTY) =:= NOTHING) =>
f1 -> f -> CONS (f, [Char]) (CONS (f1, Int) EMPTY)

> (\l1 l2 -> add (add EMPTY l1 42) l2 "x") Lx Ly ::

CONS (Ly, [Char]) (CONS (Lx, Int) EMPTY)

> (\l1 l2 -> add (add EMPTY l1 42) l2 "x") Lx Lx
-- ***ERROR***

2.3 Overlapping Instances
The definition of the function EQUAL in the previous sub-

section is tedious and restrictive: equality is only avail-
able for a fixed, predefined set of types and the number
of instance declarations grows quadratically with the size
of this set. Here is the code in our Haskell variant:

class EQUAL (l1 :: *) (l2 :: *) :: * where
equal :: l1 -> l2 -> EQUAL l1 l2

with specificity

instance EQUAL a a = TRUE where
equal a b = TRUE

instance EQUAL a b = FALSE where
equal a b = FALSE

The Haskell type system would reject an equivalent defini-
tion because the two instance declarations overlap. (EQUAL
a a is an instance of EQUAL a b.) Our Haskell dialect deals
with this declaration by rewriting of the type function EQUAL

with residuation and most-specific matching. That is, a
match on a instance declaration will not be reduced until
it is clear that no other instance declaration can match.

In particular, EQUAL t1 t2 suspends until either t1 and
t2 are fully instantiated to equal types or sufficiently instan-
tiated to determine that they cannot be equal.



2.4 Ada-style Overloading
Another typical scenario is Ada-style overloading which

corresponds to type classes with fixed, finite sets of instances.
Consider overloading the + operator with addition on Int
and Float as well as with list concatenation:

class PLUS (a :: *) (b :: *) :: * where
(+) :: a -> b -> PLUS a b

with closed narrowing
instance PLUS Int Int = Int where ...
instance PLUS Float Float = Float where ...
instance PLUS [a] [a] = [a] where ...

The phrase with closed narrowing stipulates the use of a
narrowing semantics for PLUS and indicates that the follow-
ing list of instances is complete. The resulting overloading
resolution works similarly to the operator overloading found
in the Ada programming languages. It is even more gen-
eral because it does not require that overloading is locally
resolved.

As an example, consider the following code:

f x y = (x + y) + 42

The specificity strategy from the previous subsection sim-
ply defers the resolution of overloading to the point where
the types of x and y become known. The resulting type is

f :: (PLUS x y =:= z & PLUS z Int =:= w) => x -> y -> w

Using the narrowing semantics, the type system can re-
solve the overloading locally to f :: Int -> Int -> Int.
The narrowing semantics explores all overloaded alternatives
at the same time and prunes those that do not match.

2.5 Embedding of Standard Type Classes
It is easy to encode standard type classes in our system

of type functions. Here is an encoding with an excerpt of
the Haskell 98 type class Eq that characterizes types with
an equality function.

class Eq a where

(==) :: a -> a -> Bool

instance Eq Int where

(==) = primEqInt

instance (Eq a) => Eq [a] where

[] == [] = True
(x:xs) == (y:ys) = x == y && xs == ys
_ == _ = False

instance (Eq a, Eq b) => Eq (a,b) where

(x1, x2) == (y1, y2) = x1 == y1 && x2 == y2

A translation of these declarations into type-level functions
takes the same route as the embedding of predicates into
functional logic languages via the special singleton kind,
Success, with element Success [20].

class Eq :: (a :: *) :: Success where

(==) :: a -> a -> Bool

instance Eq Int = Success where {...}

instance Eq [a] = Eq a where {...}

instance Eq (a, b) = Eq a & Eq b where {...}

Predicates can be combined by conjunction &.
In Haskell, type classes can form a hierarchy where new

classes can inherit operations from existing superclasses. We
do not consider superclasses here because they can be ex-
panded to sets of classes [5, 39].

3. PRELIMINARIES
A ranked alphabet A is a finite set of symbols with asso-

ciated arities. Let further X be a set of variables. The set
TA(X ) is the set of terms over alphabet A and variables X .
That is, it is the smallest set with X ⊆ TA(X ) and, when-
ever f ∈ A with arity n ∈ N and t1, . . . , tn ∈ TA(X ), then
f t1 . . . tn ∈ TA(X ). A term that does not contain variables
is a ground term. Let C be a ranked alphabet of constructor
symbols and let F be a ranked alphabet of function symbols.
A constructor term is a term in TC(X ).

A substitution σ is a mapping from variables to terms
which is the identity on almost all variables. A substitution
extends homomorphically to terms. A term t′ is a (substi-
tution) instance of t if there is a substitution σ such that

t′ = σ(t). In this case, we write σ : t ≤ t′ or just t ≤ t′ if σ

does not matter. Two terms t and t′ are disjoint if neither
t ≤ t′ nor t′ ≤ t. These notions extend to tuples of terms
and to substitutions in the natural way. We often write t
for a tuple of terms and analogously for other entities.

4. THE HM(X) FRAMEWORK
This section gives a short account of the HM(X) frame-

work that extends the Hindley/Milner type system with con-
straints [41]. In particular, HM(X) provides a generic type
inference algorithm that computes principal types if the un-
derlying constraint system has certain properties.

e ::= x data variables
| λx.e lambda abstraction
| e e application
| let x = e in e let expression

Θ 3 τ ::= a type variables
| τ → τ function types

Figure 1: Syntactic domains for type inference

Figure 1 defines the syntactic domains. The term lan-
guage is a lambda calculus with let [8]. The core type lan-
guage is also standard; an applied type language would in-
clude additional type constructors.

To express princial types, HM(X) defines a notion of con-
strained type scheme which combines universal quantifica-
tion with a constraint u on the type variables in a.

s ::= ∀a.u ⇒ τ type schemes

(e-var)
Γ(x) = s

u | Γ ` x : s

(e-lam)
u | Γ{x 7→ τ} ` e : τ ′

u | Γ ` λx.e : τ → τ ′

(e-app)
u | Γ ` e1 : τ2 → τ1 u | Γ ` e2 : τ2

u | Γ ` e1 e2 : τ1

(e-spec)
u | Γ ` e : ∀a.u′ ⇒ τ ′ u `̀ u′[a 7→ τ ]

u | Γ ` e : τ ′[a 7→ τ ]

(e-gen)
u & u′ | Γ ` e : τ a /∈ FV (u) ∪ FV (Γ)

u & ∃a.u′ | Γ ` e : ∀a.u′ ⇒ τ

(e-let)
u | Γ ` e1 : s u | Γ{x 7→ s} ` e2 : τ

u | Γ ` let x = e1 in e2 : τ

(e-conv)
u | Γ ` e : τ u `̀ τ

.
= τ ′

u | Γ ` e : τ ′

Figure 2: Logical type system for HM(X)

Figure 2 shows the inference rules for HM(X)’s typing
judgement u | Γ ` e : s (u is a constraint and Γ a type



assumption). The rule (u-conv) replaces the subtyping rule
of HM(X). It relies on constraint entailment `̀ , which is
defined in the next section.

5. CONSTRAINTS

U 3 u ::= t
.
= t | u & u | ∃a.u | u ; u | SUCCESS | FAIL

T 3 t ::= a | c t | f t

Figure 3: Grammar of constraints

This section describes a constraint system for use in the
HM(X) framework. A constraint specifies a unification prob-
lem involving applications of type-level functions. The gram-
mar in Figure 3 defines the constraint language.

The primitive constraint is strict equality t
.
= t′ between

two type-level terms t and t′ [13]. t
.
= t′ is satisfied if t and

t′ are reducible to the same term.3

Type-level terms t are taken from T = TC∪F (X ) where X
is the set of type variables. The type language Θ is implicitly
included in T—‘→’ is just another binary type constructor.

For convenience, the concrete syntax allows “extended
type schemes” of the form s′ ::= ∀a.u ⇒ t where the types
might contain applications of type functions. In this case, s′

denotes a corresponding proper type scheme s ∈ Θ, which
is obtained from s′ by replacing each function application
f t1 . . . tn in t by a fresh type variable a and adding an
equation a

.
= f t1 . . . tn to the constraint.

The & operator is for constraint conjunction: u1 & u2 is
satisfied if both u1 and u2 is satisfied. It is commutative and
associative. Existential quantification ∃a.u restricts a local
variable a. Its scope extends as far to the right as possible.
The constraint u1 ; u2 expresses a disjunction.

σ |= t1
.
= t2 iff σt1 ⇓ t0 and σt2 ⇓ t0 for some t0

σ |= u1 & u2 iff σ |= u1 and σ |= u2

σ |= ∃a.u iff σ[a 7→ t] |= u for some t
σ |= u1 ; u2 iff σ |= u1 or σ |= u2

σ |= SUCCESS

Figure 4: Semantics of constraints

The semantics of a constraint u is the set of ground construc-
tor substitutions that solve the constraint. A substitution σ
solves u whenever σ |= u is derivable using the axioms and
rules in Figure 4.

Since the terms in equality constraints can contain func-
tion symbols, the definition of |= is parameterized with an

evaluation relation t ⇓ t′ that evaluates term t to term t′.
We defer the definition of this relation to Section 6.

The notation σ 6|= u means that no proof exists for σ |= u.
Simplification of constraints corresponds to standard for-

mulations of E-unification [20] with a few extensions, no-
tably the explicit treatment of choice and existential quan-
tification as required by HM(X). In this section, we only
consider the core constraints. Rewriting steps arising from
function applications are treated in Section 6. The rules
in Figure 5 use a standard definition of the free variables
FV (u) of a constraint u, which treats ∃a as a binding con-
struct and uses FV (t) to yield the set of variables occurring
in a type-level term.
3“Strict equality” is a standard term in functional logic pro-
gramming. It corresponds to the standard notion of equality
in functional programming.

(u-constr-dec) c t1 . . . tn
.
= c t′1 . . . t′n ;

t1
.
= t′1 & . . . & tn

.
= t′n

(u-constr-fail) c t1 . . . tn
.
= d t′1 . . . t′m ; FAIL

if c 6= d or n 6= m

(u-exch) t
.
= a ; a

.
= t

if t not a variable

(u-taut) a
.
= a ; SUCCESS

(u-occur) a
.
= t ; FAIL

if a ∈ CV (t) and t 6= a

(u-subst) a
.
= t & u ; a

.
= t & u[a 7→ t]

if t = c a1 . . . an and a /∈ {a1, . . . , an}
(u-subst-var) a

.
= b & u ; a

.
= b & u[a 7→ b]

if a ∈ FV (u)

(u-peel) a
.
= c t1 . . . tn ;

∃a1 . . . an.
a

.
= c a1 . . . an &
a1

.
= t1 & . . . & an

.
= tn

if a /∈ CV (ti) and ∃i.ti not a variable

(u-and-success) SUCCESS& u ; u

(u-and-fail) FAIL& u ; FAIL

(u-choice-and) u &(u1 ; u2) ; (u & u1) ;(u & u2)

(u-choice-fail-1) FAIL ; u ; u

(u-choice-fail-2) u ;FAIL ; u

(u-choice-success-1) SUCCESS ; u ; SUCCESS

(u-choice-success-2) u ;SUCCESS ; SUCCESS

(u-exists-drop) ∃a.u ; u
if a /∈ FV (u)

(u-and-exists) u1 & ∃a.u2 ; ∃a.u1 & u2

if a /∈ FV (u1)

(u-and-context-1)
u1 ; u′1

u1 & u2 ; u′1 & u2

(u-exists-context)
u ; u′

∃a.u ; ∃a.u′

(u-choice-context-1)
u1 ; u′1

u1 ; u2 ; u′1 ; u2

Figure 5: Simplification of constraints

For a sound occur check in E-unification, it is necessary
to consider the set CV (t) of the critical variables of t. A
variable is critical unless it is protected by a function sym-
bol [20]:

CV (a) = {a}
CV (c t1 . . . tn) = CV (t1) ∪ · · · ∪ CV (tn)
CV (f t1 . . . tn) = ∅

The first four rules of Figure 5 are standard: The (u-constr-
dec) rule performs term decomposition and pushes the equal-
ity of two terms with matching top-level constructors to the
immediate subterms. The (u-constr-fail) rule signals failure
if either the top-level constructors do not match or if the
number of subtrees does not agree. The (u-exch) rule ori-
ents equations so that variables appear on the left side. The
rule (u-taut) removes trivial equations.

The (u-occur) rule performs the occurs-check restricted to
critical variables as explained above.

The rule (u-subst) applies a constructor substitution and
(u-subst-var) substitutes a variable by an other variable.
The rule (u-peel) peels a constructor substitution from the
top of a term, potentially exposing a function call or making
it possible to apply (u-occur) on a subterm.

The (u-and-success) and (u-and-fail) rules specify how
conjunction interacts with success and failure, respectively.

The (u-and-exists) rule allows an existential quantifier to



float out of a conjunction unless variable capture forbids it.
The (u-exists-drop) rule drops an existential quantification
if the bound variable does not appear in the constraint.

The (u-choice-and) rule is a distributive law of conjunc-
tion over choice. The rules (u-choice-fail-* ) remove a failing
constraint from a choice operator. The (u-choice-success-* )
rules select the first succeeding alternative of a choice.

The last group of rules determines the context in which
transformations may occur: The rules (u-and-context-* ) al-
low transformation in both arguments of a conjunction (it
is commutative). Rule (u-exists-context) performs transfor-
mation under existential quantification and rules (u-choice-
context-* ) enables transformation of each individual choice.

Here are some properties of constraint simplification:

Proposition 1 (Equivalence). Suppose that u ; u′.

Then σ |= u if and only if σ |= u′.

Proposition 2. Constraint simplification is confluent.

Definition 1. A constraint u is normalized iff u = FAIL
or u = SUCCESS or u = ∃a.u1 & . . . & un where {a} =
FV (u1 & . . . & un) and each ui is in one of the following
forms:

• a
.
= b where a and b are different variables;

• a
.
= C a1 . . . ak a constructor substitution where a /∈

{a1 . . . ak};

• a
.
= F t1 . . . tk where t1, . . . , tk ∈ TC(X );

• u′1; . . . ; u
′
m where u′1, . . . , u

′
m are normalized, but nei-

ther FAIL nor SUCCESS.

Moreover, u is in solved form iff u is normalized and each
variable a occurs at most once in a constraint a

.
= . . . ;

Proposition 3. If the rule (u-peel) is restricted to apply
at most once to any particular constraint, then constraint
simplification terminates with a normalized constraint.

Finally, we define the entailment relation.

Definition 2. Entailment is a relation `̀⊆ U×U defined
by u `̀ u′ iff, ∀σ, σ |= u implies σ |= u′.

The constraint system specified in this section is in a form
suitable for HM(X) [41]. The formal statements and proofs
are in the full version of the paper [12].

6. EVALUATION STRATEGIES
The constraint system of the previous section deliberately

does not address the evaluation of function applications in
constraints: Function applications are evaluated as terms in
the sense of functional logic programming. In turn, func-
tional logic programming knows a variety of different eval-
uation strategies with different tradeoffs [18, 19]. Thus, the
evaluation strategy is a parameter to simplification.

The choice of evaluation strategy must take a number of
pragmatic issues into account:

• For type-level functions reified at the value level the
evaluation strategy should be the same at both levels.

• The with closed clause specifies that a given type
class is closed by giving a fixed, final set of instances.

• There must be support for open type classes.4

• There may be no obvious order among the instances
of a class (ruling out a sequential strategy).

We consider three evaluation strategies, each of which cor-
responds to a different strategy for resolving overloading:

outermost residuation with sequential matching
This strategy corresponds most closely to Haskell’s
constraint reduction with underlying open-world
semantics. With a closed-world assumption, it is the
strategy of choice for functions lifted from the data
level.

outermost residuation with most-specific matching
This strategy is most useful for resolving Haskell-style
overlapping instances.

outermost narrowing This strategy is useful for model-
ing Ada-style overloading. It also assumes a closed
world.

As a prerequisite we assume that each function on the type
level is defined by a terminating term rewriting system with

rules of the form fθ p1 . . . pn = r. θ is a strategy annota-
tion and is one of the letters r, s, and n for “residuation,”
“specificity,” and “narrowing,” respectively. By convention
p (with decoration) always stands for a constructor term.

Moreover, write fθ pj1 . . . pjn = rj for the jth rule of the

definition for function fθ, and that mfθ is the number of

rules for fθ. Clearly, there is no t′ so that fθ t1 . . . tn
j→ t′

if j > mfθ .

Each of the following subsections discusses one of the
strategies. Each starts off with an exposition of the rewrit-
ing strategy. A definition of the corresponding rewriting
rule is next, and finally we explain the applicability of this
particular strategy in terms of one of the examples.

6.1 Residuation with Sequential Matching
Our first strategy is based on residuation [47]. It is less

powerful than narrowing (it is incomplete) but it gives rise
to a deterministic evaluation strategy.

We present a complete formulation of residuation with se-
quential matching. It corresponds to the typical way that
functional programming languages interpret pattern match-
ing. The strategy tries to match the equations in textual
order and commits to the first matching equation. On the
type level, this is the strategy of choice for function lifted
from the data level to ensure that their type-level semantics
are the same as their data-level semantics.

Even though residuation with sequential matching is a
standard strategy [19], we present it in full because the pre-
sentation of specificity-based matching in Section 6.2 builds
upon the definitions here.

Our notion of reduction is specified as a rewriting relation
on type terms t → t and is shown in Figure 6. In addition to

4 Haskell in particular, restricts instance declarations so that
for each top-level type constructor there is at most one in-
stance declaration. This restriction guarantees that reduc-
tion of predicates (aka reduction of type functions) is deter-
ministic because addition of new instances neither changes
the typing nor the meaning of an existing definition. The
overlapping instances extension of Haskell has severe prob-
lems in connection with Haskell’s open-world assumption.



fr t1 . . . tn
1→ t′

fr t1 . . . tn → t′

M(t1 . . . tn, pj1 . . . pjn) = Succ σ

fr t1 . . . tn
j→ σrj

if j ≤ mfr

M(t1 . . . tn, pj1 . . . pjn) = Fail

fr t1 . . . tn
j+1→ t′

fr t1 . . . tn
j→ t′

if j ≤ mfr

M(t1 . . . tn, pj1 . . . pjn) = Red t′1 . . . t′n

fr t1 . . . tn
j→ f t′1 . . . t′n

if j ≤ mfr

Figure 6: Sequential residuation strategy

the rules of a standard outermost reduction strategy, there
are additional cases for dealing with logical variables. Eval-
uation regards logical variables as indeterminate values.

The definition of an outermost residuation step, t → t′,

rests on an auxiliary notion of reduction, t
j→ t′. Both rela-

tions are at most defined for terms t of the form fr t1 . . . tn.

The latter relation, t
j→ t′, holds if t rewrites to t′ using rule

number j or higher. The definition of → relies on a match-
ing function M(t, p) that takes a tuple of terms, t, and a
tuple of patterns, p, both of the same length, and produces
a match result. A match result is either

• Succ σ indicating a match with substitution σ;

• Fail indicating a match failure;

• Suspend indicating that t is not sufficiently instanti-
ated to decide matching with p;

• Red t
′
indicating that the attempt to match t against

p has forced an evaluation step from t to t
′

in one of
the components.

Note that there is no t′ such that fr t1 . . . tn
j→ t′ if the

matching function yields M(t1 . . . tn, pj1 . . . pjn) = Suspend.
Matching makes use of the subsidiary demand function

D(t, p) that tries to evaluate the term t sufficiently so that
syntactical matching with p is possible. Since D just drives
the evaluation, it does not return a substitution but only
signals with Succ that the term is sufficiently evaluated for
matching to proceed syntactically.

For the correct and exhaustive definition of D, we rely on
an automaton that implements left-to-right matching. The
states of the automaton form the following set Q:

Q = {(i,Succ) | i ∈ N} ∪ {Suspend,Fail}
∪ {(i,Red t) | i ∈ N, t ∈ TC∪F (X )}

The meaning of Succ, Suspend, Fail, and Red t is as described
above. The additional index i paired with Succ and Red
determines a position in a tuple. In particular, (i,Red t)
means that the ith subterm has been reduced to t and must
be replaced accordingly.

q \ x Succ Suspend Fail Red t′

(i,Succ) (i + 1,Succ) Suspend Fail (i + 1,Red t′)
Suspend Suspend Suspend Suspend Suspend
Fail Fail Fail Fail Fail
(i,Red t) (i,Red t) (i,Red t) (i,Red t) (i,Red t)

Figure 7: Demand state transition function

The table shown in Figure 7 defines the function δ(q, x),
for q ∈ Q and a match result x that accumulates the demand
state of a list of terms. Typically, this list is the list of
subterms of a particular term. The state remains Succ as
long as the input symbol is Succ. At the same time, the
index keeps track of the position in a list of terms. The
input Suspend or Fail changes the state to Suspend or Fail.
On input Red t, the state changes to (i,Red t) to register
the position where the reduction should happen. We write

δ∗(q,D(ti, pi)) for δ(. . . (δ(q,D(t1, p1)), . . . ),D(tn, pn)).

D(t, a) = Succ
D(a, c p1 . . . pn) = Suspend

D(fr t1 . . . tn, p) =

8>>>>><>>>>>:

Red t′

if p not a variable
and fr t1 . . . tn → t′

Suspend
if p not a variable
but (@t′) fr t1 . . . tn → t′

D(c t1 . . . tn, c′ p1 . . . pn′ ) = Fail if c 6= c′ or n 6= n′

D(c t1 . . . tn, c p1 . . . pn) =

8>>><>>>:
Succ if q′ = (n,Succ)
Fail if q′ = Fail
Suspend if q′ = Suspend
Red c t1 . . . t′i . . . tn
if q′ = (i,Red t′i)

where q′ = δ∗((0,Succ),D(ti, pi))

Figure 8: Demand function

Figure 8 shows the demand function D. If the pattern is
a variable, it signals Succ. If the term is a variable but the
pattern is not, then D suspends because matching cannot
proceed without further instantiation of the term. If the
term is a function call and the pattern is not a variable,
then D returns Red t′ if the function call reduces, otherwise
D returns Suspend. If term and pattern start with construc-
tors that are either different or applied to different numbers
of subterms, D returns Fail. If both term and pattern start
with the same constructor applied to the same number of
subterms, D is applied recursively to all corresponding sub-
terms and subpatterns. If all recursive calls yield Succ, the
result is Succ. If the first non-Succ result is Fail, the result
is Fail. If the first non-Succ result is Suspend, the result is
Suspend. If the first non-Succ result is Red t, the result is
also Red but with t correctly replaced in the reduced term.

M(t1 . . . tn, p1 . . . pn) =8>>>>>>><>>>>>>>:

Succ σ if q′ = (n,Succ)
and (∀1 ≤ i ≤ n) σpi = ti

Fail if q′ = (n,Succ)
and (∀σ∃i) σpi 6= ti

Fail if q′ = Fail
Red t1 . . . t′i . . . tn if q′ = (i,Red t′i)
Suspend if q′ = Suspend

where q′ = δ∗((0,Succ),D(ti, pi))

Figure 9: Matching function

The matching function M shown in Figure 9 applies D
recursively to all corresponding pairs, (ti, pi), of term and
pattern. If all calls to D return Succ, then syntactic match-
ing is possible and M returns Succ σ if σ : p ≤ t and Fail if
no such substitution exists. M returns Fail, Suspend, and
Red t analogously to D.

In the definition of σ |= u a notion of normalization t ⇓ t′

is required which does not stop reduction at a constructor,



but rather reduces the subterms of a data constructor as
well. The definition of normalization does not distinguish
partiality from non-termination: it either computes a con-
structor term t′ or is undefined:

a ⇓ a
t1 ⇓ t′1 . . . tn ⇓ t′n
c t1 . . . tn ⇓ c t′1 . . . t′n

fr t1 . . . tn → t′ t′ ⇓ t

fr t1 . . . tn ⇓ t

On the basis of this rewriting relation, the constraint sys-
tem can be extended by the following simplification rule for
constraints:

(u-residuate) t1
.
= t2 ; t′1

.
= t′2

if (t1 → t′1 and t2 = t′2)
or (t2 → t′2 and t1 = t′1)

Proposition 4. Rule (u-residuate) is sound and com-
plete.

This results extends Proposition 1. Given a confluent and
termination term rewriting system, Propositions 2 and 3 ex-
tend, too. The structural properties of constraint entailment
remain true, but we cannot hope for a principal constraint
property, in general.

Figure 10 demonstrates the use of (u-residuate) for infer-
ring the types of some expressions involving records.

6.2 Residuation with Most-Specific Matching
The residuation strategy with sequential matching is ap-

plicable when there is an obvious textual ordering of the in-
stances belonging to a single class. In the context of Haskell,
this is usually not the case, as the instances may be spread
over several modules. Making the semantics of overloading
depend on the order of the imports would be unsatisfactory.
Hence, we consider a residuation strategy which is indepen-
dent of the textual order of the instances and which deals
directly with overlapping rules.

In the context of term rewriting, Kennaway [34] consid-
ers a specificity rule for ambiguous term rewriting systems:
“The rule (really a rewriting strategy) stipulates that a term
rewrite rule of the system can only be used to reduce a term
which matches it, if that term can never match any other
rule of the system which is more specific than the given rule.
One rule is more specific than another if the left-hand side
of the first rule is a substitution instance of the second, and
the reverse is not true.” This is exactly the right definition
for our purposes. While Kennaway applies the rule by trans-
lating a system of equations into strongly sequential form,
we embed specificity directly into our evaluation strategy.

We start off in a simplified setting. Let t be a constructor
term and P be a set of patterns that appear as left-hand
sides of equations. Let U(t, P ) be the set of patterns unifi-
able with t and M(t, P ) the set of patterns matching t.

U(t, P ) = {p ∈ P | ∃t′.t ≤ t′ ∧ p ≤ t′}
M(t, P ) = {p ∈ P | p ≤ t}

Clearly, each matching pattern is also a unifiable pattern
and instantiating a term increases the set of matches.

Proposition 5. M(t, P ) ⊆ U(t, P ) (1)

t ≤ t′ ⇒ M(t, P ) ⊆ M(t′, P ) (2)

We say that

• a pattern set P is ambiguous for t if
M(t, P ) does not have a greatest element wrt. ≤.

• a pattern p ∈ P is a definite match for t if
p ∈ M(t, P ) and ∀p′ ∈ U(t, P ).p′ ≤ p.

A pattern p cannot be a definite match for t as long as there
are patterns in P which are more specific than p and which
are unifiable with t. Clearly, if σ0 is a unifier of p′′ and t,
then σ0t matches p as well as p′′. Hence, the definition rules
out all potential patterns like p′′.

The original formulation of the specificity rule only deals
with term rewriting systems. We also need to handle terms
which contain residual function applications which are not
sufficiently instantiated for further evaluation. Hence, we
are interested in answering the following question: could
the function calls in (an instance of) t eventually evaluate
to something matching p? We make a very rough approx-
imation to this property by replacing each function call in
t by a fresh variable and trying to unify the resulting term
with p. Hence, define FA(t) as a constructor term so that

t = FA(t)[ai 7→ fi t
′
i] where ai /∈ t for all i.

Proposition 6.

M(t, P ) = M(FA(t), P ) (1)

U(t, P ) ⊆ U(FA(t), P ) (2)

∀t′.(t ≤ t′ ∧ t′ ⇓ t′′) ⇒ U(t′′, P ) ⊆ U(FA(t), P ) (3)

We extend our former definition:

• pattern p ∈ P is a final match for t if p ∈ M(t, P ) and

∀p′ ∈ U(FA(t), P ).p′ ≤ p.

For defining the specificity-based strategy, we extend the
definitions of M , U , and FA() to tuples of terms t as well as

sets of tuples of patterns P whenever the number of compo-
nents of the tuples is the same throughout a set.

The specificity-based strategy tests all rewriting rules be-
fore making the decision. For a term t = fs t1 . . . tn, it
computes a set L as follows:

• Each matching left-hand side contributes a pair of the
form 〈pj , σrj〉M where pj is a tuple of patterns (the

left-hand side patterns of rule j) and σrj is the instan-
tiated right-hand side of the matching rule j.

• A left-hand side for which matching suspends con-
tributes just its tuple of patterns 〈pj〉S .

Now define LP(L) = {p | 〈p, r〉M ∈ L ∨ 〈p〉S ∈ L}, and let

finalMatch(L, t) :=

{〈p, t′〉 | 〈p, t′〉M ∈ L, p final match for t in LP(L)}.

Figure 11 defines the rewriting strategy as a reduction

relation t
s→ t′ using an inference system for judgements of

the form L; t
s,i→ t′ where L tracks the applicable matches.

We write e, L for {e} ∪ L.



Consider the generation of a record with one integer element at label Lx: add EMPTY Lx 42.
The trace shows how u-residuate implements Haskell’s predicate reduction at the type level:

1. Assumption: EMPTY :: EMPTY
2. Assumption: Lx :: Lx
3. Assumption: 42 :: Int
4. Assumption: add :: (SELECT f r =:= NOTHING) => r -> f -> v -> CONS (f,v) r
5. (e-app) on 4 and 1: add EMPTY :: (SELECT f EMPTY =:= NOTHING) => f -> v -> CONS (f,v) EMPTY
6. (e-app) on 5 and 2: add EMPTY Lx :: (SELECT Lx EMPTY =:= NOTHING) => v -> CONS (Lx,v) EMPTY
7. (e-app) on 6 and 3: add EMPTY Lx 42 :: (SELECT Lx EMPTY =:= NOTHING) => CONS (Lx,Int) EMPTY
8. (u-residuate) on the call to SELECT in 7 succeeds in the first step with substitution σ mapping f to Lx:

add EMPTY Lx 42 :: (NOTHING =:= NOTHING & f =:= Lx) => CONS (Lx,Int) EMPTY
9. (u-constr-dec) and the fact that f is not part of the type lets us get rid of the remaining constraints:

add EMPTY Lx 42 :: CONS (Lx,Int) EMPTY

Figure 10: Type Derivation for Records

∅, fs t1 . . . tn
s,1→ t′

fs t1 . . . tn
s→ t′

M(t1 . . . tn, pj1 . . . pjn) = Succ σ

〈pj , σrj〉M , L; fs t1 . . . tn
s,j+1→ t′

L; fs t1 . . . tn
s,j→ t′

if j ≤ mfs

M(t1 . . . tn, pj1 . . . pjn) = Fail

L; fs t1 . . . tn
s,j+1→ t′

L; fs t1 . . . tn
s,j→ t′

if j ≤ mfs

M(t1 . . . tn, pj1 . . . pjn) = Red t′1 . . . t′n

L; fs t1 . . . ti . . . tn
s,j→ fs t′1 . . . t′n

if j ≤ mfs

M(t1 . . . tn, pj1 . . . pjn) = Suspend

〈pj〉S , L; fs t1 . . . tn
s,j+1→ t′

L; fs t1 . . . tn
s,j→ t′

〈p, t′〉 ∈ finalMatch(L, t1 . . . tn)

L; fs t1 . . . tn
s,j→ t′

if j > mfs

Figure 11: Specificity-based strategy

In the same way as for the sequential evaluation strategy,
the specificity-based strategy induces an evaluation relation:

a
s

⇓ a
t1

s

⇓ t′1 . . . tn

s

⇓ t′n

c t1 . . . tn

s

⇓ c t′1 . . . t′n

fs t1 . . . tn
s,1→ t′ t′

s

⇓ t

fs t1 . . . tn

s

⇓ t

The integration of the specificity-based strategy into the
type inference engine gives rise to a rule (u-residuate-ms)
which is analogous to (u-residuate).

Proposition 7. Rule (u-residuate-ms) is sound and

complete with respect to
s

⇓.

Figure 12 shows an example derivation using residuation
with most-specific matching.

6.3 Narrowing
Assuming a closed world, we need not defer the expan-

sion of a function to the point where its parameters are
sufficiently known. In particular, we can derive negative
information and hence determine failures earlier.

Narrowing comes in several eager and lazy variants [18].
Unfortunately, a narrowing step may introduce a choice of

We apply the overloaded equal member value of the EQUAL class
from Section 2.3 to two character literals: equal ’x’ ’y’.

1. Assumption after (e-spec):
equal :: (r =:= EQUAL Char Char) => Char -> Char
-> r

2. ’x’, ’y’ :: Char
3. equal ’x’ ’y’ :: (r =:= EQUAL Char Char) => r
4. (u-residuate-ms) on the constraint of 3 leads to r =:=

TRUE where

〈a, a, TRUE〉 ∈ finalMatch(∅, Char, Char)

∅, EQUAL Char Char
s,1→ TRUE

EQUAL Char Char
s→ TRUE

5. applying the substitution yields equal ’x’ ’y’ :: TRUE

Figure 12: Example with Most-Specific Matching

different alternatives. This choice is often expressed by non-
deterministically rewriting a term into a term paired with a
substitution. Formally, fn t1 . . . tn ;σ σr if fn p1 . . . pn =
r is a variant of a rule for fn and σ is the most general
(syntactic) unifier of t and p. The non-determinism arises
due to the choice among the rules which are unifiable with
p. In our constraints, the non-determinism appears in the
form of disjunction.

Provided that the underlying term rewriting system is
confluent and terminating, narrowing yields a sound and
complete E-unification strategy [24]. A sufficient condition
for confluence is orthogonality of the rewrite rules (the left-
hand sides of the rules are pairwise disjoint).

Here is the appropriate addition to the constraint simplifi-
cation system that implements the narrowing strategy (;mj=1

means a disjunction of constraints for j = 1, . . . , m):

(u-narrow) u ; ;mj=1 ∃aj .t1
.
= t′j1 & . . . & tn

.
= t′jn & t

.
= r′j

if (u = fn t1 . . . tn
.
= t or u = t

.
= fn t1 . . . tn)

and t not a variable
and fn t′j1 . . . t′jn = r′j for 1 ≤ j ≤ m

are fresh variants of fn’s defining rules
and aj are the free variables in the jth rule

Proposition 8. Rule (u-narrow) is sound and complete.

The use of narrowing in type reduction can lead to bet-
ter types and earlier error detection. On the other hand,
narrowing it can also lead to complex and potentially un-
readable types.

Figure 13 considers the example from Section 2.4. The
interaction of the two uses of narrowing allows the type
checker to “narrow down” the type to the point where it
becomes unique. The effect is similar to the two-pass algo-
rithm for overloading resolution for Ada given in the Dragon



book [1]. The important difference is that our strategy does
not require that an expression has a unique type, but rather
defers the final elaboration by moving the remaining predi-
cates into the type’s context.

Narrowing is only applicable for mutually disjoint sets
of patterns. In particular, narrowing in combination with
most-specific matching can lead to problems. To see this,
consider the function f defined by f C = D and f a = a,
where C and D are nullary constructors. Consider further
the equation f C

.
= C. By definition, a narrowing step with

this definition of f leads to [C
.
= C & D

.
= C; a

.
= C & a

.
=

C; ]. This predicate simplifies to [FAIL; a
.
= C; ] and then to

a
.
= C. This outcome is wrong since the failure to unify the

actual result of f with the expected result is interpreted as
failure to match the argument with the expected argument.
The correct simplification of f C

.
= C would be FAIL.

7. IMPLEMENTATION NOTES
We have implemented a prototype frontend for the vari-

ant of Haskell used in the examples of this paper. In par-
ticular, we have adapted a Haskell frontend [36] to the new
syntax, added a dependency analysis and a kind inference
pass as well as a translation to essentially the form required
by Jones’s Typing-Haskell-in-Haskell type checker [30]. We
have adapted the type checker to HM(X), and implemented
the constraint simplification rules in Figure 5. The con-
straint simplifier calls an evaluation engine for function ap-
plications based on definitional trees [19], a representation
for functional logic programs allowing fine-grain control over
the evaluation strategy. Currently, we have instance transla-
tion functions implementing sequential residuation and nar-
rowing as described in Sections 6.1 and 6.3.

8. RELATED WORK
There have been many approaches to adding overloading

to languages with a Hindley/Milner style polymorphic type
system, beginning with Kaes [33] and Wadler and Blott [49]
and later picked up, refined, and implemented by many oth-
ers [40, 5, 39, 3, 26, 42, 15, 27, 29, 43, 35, 31]. In particular,
recent work is pushing hard the borders of complete and de-
cidable type inference [45, 46]. In the face of this plethora,
we only consider the most closely related work here.

The work of Jones [27] and its extension to constructor
classes [26] provides a general framework for type infer-
ence with qualified types which (still) subsumes the facilities
present in Haskell 98. The framework of qualified types is
not sufficiently expressive for our purposes because it neither
supports disjunction nor a closed-world assumption. Still,
much of our inspiration comes from Jones’s work on im-
provement of predicates [29] and from its implementation
via functional dependencies [31].

The HM(X) framework [41] generalizes various constraint-
based type inference systems, e.g., for record types and for
object types. It can be instantiated to Haskell’s type classes
and can handle open-world as well as closed-world theories.
HM(X) provides us with a parameterized type inference en-
gine and completeness results.

A recent proposal that employs constraint handling rules
(CHR) to model type classes [14] is also based on HM(X).
In this proposal, the semantics of predicate reduction is for-
mally defined as the rewriting relation induced by the CHR.
Semantic properties such as ambiguity can be decided by

checking certain properties of CHRs. The authors demon-
strate the generality of CHRs and their suitability to encode
closed-world theories, too. Much of the thrust of our work is
also on formally specifying the semantics of constraint sim-
plification. However, a key innovation of our proposal is the
customizability of the evaluation strategy.

Duggan and others [10] have proposed kinded parametric
overloading for a variant of ML. They define a kind struc-
ture similar to a type class from accumulated overloaded
value definitions. They have open kinds (corresponding to
an open-world theory) as well as closed kinds (sic), but they
provide a fixed type inference engine for their language. In
contrast, we specify a parameterized modular type inference
system based on HM(X).

Shields and Peyton Jones [46] discuss various ad-hoc ex-
tensions of Haskell’s type system with the goal of explor-
ing the design space. The main thrust of their extensions is
the interoperability between Haskell and the object-oriented

language C]. In particular, they present an encoding of sub-
typing, ad-hoc overloading in a style similar to Java, and
a general notion of overlap. Technically, they develop a
type inference engine and give an overview of its technical
properties—termination, completeness, etc. Our approach
is incomparable in power with their proposal. We can deal
with most of their extensions, except the resolution of Java-
style overloading. We expect that their proposed solution
(define a partial order on type classes) could also be made
to work with our most-specific matching strategy. On the
other hand, the narrowing approach to resolve Ada-style
overloading is unique to our system. In addition, our sys-
tem extends simply and modularly just by specifying a new
rewrite strategy.

Further work on type-level programming indicates wide-
spread interest in the subject. There are applications [38,
37, 16, 48] as well as theoretical investigations starting from
a variety of foundations. Dependent types are certainly
the ultimata ratio in type-level programming. Cayenne [4]
is a Haskell dialect that builds on dependent type theory.
Cayenne is much more radical than the present work be-
cause it builds on a richer type theory, where the entire
term language is encorporated in the type language. While
this is an interesting proposition for future work, we only
allow certain term rewriting systems at present.

An approach towards integrating dependent types into a
full programming language is the language DML(C) [51].
DML(C) allows for types indexed with constraints from a
constraint domain C. This approach is also incomparable
with our proposal. While DML(C) can incorporate semanti-
cally rich constraint theories and thus guarantee a decidable
type checking algorithm, our constraint theory is in principle
fixed but still variable due to the underlying term rewriting
system and the choice of strategy for each function.

Intensional type analysis [21, 7, 6, 50] is an approach to
defining functions by induction on the structure of types.
These works are closer to generic programming [22, 25]. The
commonality is that their scheme of function definition is
much more rigid than with our approach. Usually, the in-
spection of the type structure is limited to a fold operation.
In contrast, we can examine the type structure using a term
rewriting system, which can even be ambiguous.

There is a plethora of different strategies for performing
narrowing and residuation and each has its benefits. Defi-
nitional trees [19] serve as a mechanism for fine-grain spec-



Narrowing obtains the unambiguous typing f :: Int -> Int -> Int (cf. Section 2.4) via the following derivation:
1. Assumptions: x :: x, y :: y, (+) :: (c =:= PLUS a b) => a -> b -> c
2. (e-app) on 1: (+ x) :: (c =:= PLUS x b) => b -> c
3. (e-app) on 2 and 1: x + y :: (c =:= PLUS x y) => c
4. (e-app) on 1 and 3: (+) (x + y) :: (f =:= PLUS c e & c =:= PLUS x y) => e -> f
5. (e-app) on 4 and 42 :: Int: (x + y) + 42 :: (f =:= PLUS c Int & c =:= PLUS x y) => f

From now on, the term remains the same and is omitted.
6. (u-narrow) for first PLUS on 5: (((c =:= Int & Int =:= Int & f =:= Int)

;(c =:= Float & Int =:= Float & f =:= Float)
;(exists q. c =:= [q] & Int =:= [q] & f =:= [q]))
& c =:= PLUS x y) => f

7. (u-choice-and) on 6: ((c =:= Int & Int =:= Int & f =:= Int & c =:= PLUS x y)
;(c =:= Float & Int =:= Float & f =:= Float & c =:= PLUS x y)
;(exists q. c =:= [q] & Int =:= [q] & f =:= [q] & c =:= PLUS x y)) => f

8. (u-constr-dec), (u-constr-fail) on 7: ((c =:= Int & Success & f =:= Int & c =:= PLUS x y)
;(c =:= Float & Fail & f =:= Float & c =:= PLUS x y)
;(exists q. c =:= [q] & Fail & f =:= [q] & c =:= PLUS x y)) => f

9. (u-and-fail) and (u-exists-drop) on 8: ((c =:= Int & Success & f =:= Int & c =:= PLUS x y) ;Fail ;Fail) => f
10. (u-choice-fail) and (u-and-success) on 9: (c =:= Int & f =:= Int & c =:= PLUS x y) => f
11. (u-subst) on 10: (Int =:= PLUS x y) => Int
12. (u-narrow) on 11: ((x =:= Int & y =:= Int & Int =:= Int)

;(x =:= Float & y =:= Float & Int =:= Float)
;(exists q. x =:= [q] & y =:= [q] & Int =:= [q]) ) => Int

13. (u-constr-dec), (u-constr-fail), (u-and-success), (u-and-fail), (u-exists-drop), and (u-choice-fail) on 12:
(x =:= Int & y =:= Int) => Int

Figure 13: An Example Derivation with Narrowing

ification of evaluation strategies. In particular, the Curry
language [20] allows the programmer to annotate equations
with evaluation annotations specifying the evaluation strat-
egy, similar to our approach.

9. CONCLUSION
We have presented a programmable approach to the im-

plementation of overloading. The introduced transition from
type-classes-as-predicates to type-classes-as-functions allows
for natural formulations of solutions of many practical over-
loading problems, among them the classic sprintf problem,
the handling of overlapping instances as well as Ada-style
overloading. We have designed a concrete variant of the
Haskell language which supports functional logic overload-
ing, and implemented a prototype frontend for it. The type
system needed for handling this style of overloading is based
on parameterizing the HM(X) framework with unification
constraints. Constraint simplification calls an evaluation en-
gine for functional logic programs when it encounters appli-
cations of type-level functions. The choice of an evaluation
strategy for type-level functions opens a spectrum of design
choices for this style of overloading. Different applications
benefit from different evaluation strategies. It remains to be
seen what combination of evaluation strategies is most ap-
propriate for practical use, and what degree of control over
it the language should offer the programmer.
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