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ABSTRACT
Lula is a system for computer-assisted stage lighting design
and control. Whereas other systems for the same purpose
are usually the results of long chains of incremental improve-
ments of historic concepts, Lula represents a complete re-
design. Whereas other systems focus on control aspects of
lighting, Lula focuses on design and generates control in-
formation from it. This approach gives significantly more
flexibility to the lighting designer and shortens the design
process itself.

Lula’s design and implementation draw from a number
of disciplines in advanced programming. It is written in
Scheme and runs atop PLT Scheme, and benefits from its
high-level GUI library. Lula uses an algebraic model for
lighting looks based on just three combinators. It employs
Functional Reactive Programming for all dynamic aspects
of lighting, and is programmable via a functional-reactive
domain-specific language.

Lula is an actual product and has users who have neither
interest in nor knowledge of functional programming.

1. THE DEMANDS OF STAGE LIGHTING
Live shows require lighting. This applies to theater, but

also to concerts and industrial presentations. Lighting a
stage well is surprisingly hard. Modern stage lighting pre-
scribes multiple colored light sources for a single place on
stage. Even though the complexity of the lighting is often
not apparent to the spectator, the difference between white
head-on lighting and a setup which takes into account mod-
elling, focus, environmental representation, mood, temper-
ature, etc. is striking. This makes lighting design a difficult
craft and an art with recognized masters [17, 20].

The demands of the craft have produced a stunning ar-
senal of technology available to today’s lighting designer:
Modern intelligent lighting fixtures (or just fixtures for short)
have electronic controls for intensity, direction, focus, color,
beam shape, and many other parameters. Their practical
use requires computerized control systems.
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Figure 1: Set groundplan for Doctor Love.

Lighting Looks. Consider a simple lighting session in a
theatrical setting. The basic ingredients are a stage with
props and actors, and simple theatrical fixtures with variable
intensity. The play is Doctor Love: Doctor Love, a mad
scientist, is working on a new hybrid virus which attacks
both humans and computer programs written in functional
languages. Her assistant, Frederick Thirst, has to do most of
the computer programming while Doctor Love works mostly
at the bio lab during alternate shifts. Between them, one of
them usually sleeps on a sofa in the lab. During the course of
the play, Thirst discovers the beauty of functional languages
and convinces Doctor Love to abandon her evil plan. As the
sun rises, they fall in love on the sofa. End of play.

Figure 1 shows the set groundplan. The director sets the
following requirements for the lighting:

• The main acting areas—gravitational centers for the
actors’ movements—are on the chair behind the desk,
the two lab tables, the sofa, and on the downstage
center area between the desk and the lab tables.

• When Doctor Love emits her evil laugh, always behind
the upstage lab table, she must look particularly evil.

• The contrast between the normal, sterile lighting dur-
ing most of the play and the sunrise at the end must
be very strong and visible.

A lighting designer, faced with these requirements, will usu-
ally start by lighting the basic acting areas: the chair be-
hind the desk, the sofa and the two lab tables, and the cen-
ter. Each such area will need several fixtures pointed at
it to ensure good illumination and facial modelling, pos-
sibly with differing intensities. The designer will proba-
bly light the two lab tables separately. Additionally, she
might place footramps under the downstage lab table for the
Frankenstein-type evil-laugh lighting. A number of yellow-
orange backlights provide the sunrise lighting.



These basic lighting components appear in a variety of
combinations as lighting looks during the play: Basic, neu-
tral lighting is a simple combination of the desk-area light-
ing, the sofa, the lab table lighting (itself consisting of two
subcomponents), and the center area. Monologues might
dim down all but one of these components to highlight a
particular area. Special combinations include the evil-laugh
look and the sunrise.

Technically, all of these lighting looks are merely inten-
sity specifications for the stage fixtures—if the fixtures are
numbered with indices, looks are simply vectors of intensi-
ties. However, it is immediately obvious that the intentions
of the lighting designer carry a hierarchical structure.

Design Goals. Most commercial lighting control systems
only support the construction of lighting components with
depth two, and do not store their hierarchical structure at
all. At present, only two consoles support hierarchical mod-
elling for lighting looks, but their usage is discouraged by
inflexible user interfaces, intricate semantic issues and in-
sufficient documentation [3, 9]. The effect is that existing
systems represent looks at the control or implementation
level rather than at the conceptual level of the design. In
fact, the schism between these two levels bears striking simi-
larities to the difference between imperative and declarative
programming.

Therefore, the major goal of Lula is a more faithful repre-
sentation of the structure of a lighting design. This requires
re-examining all basic design premises of existing systems,
and has resulted in a complete redesign of the very concept
of the lighting control system: Lula has been developed from
scratch, both implementation-wise and conceptually.

Lula also tries to address another shortcoming of existing
systems: These systems exhibit significant non-linearities
between the user-interface controls and the actual situation
on stage. Lighting designers often find themselves operating
a control on the console and wondering, why nothing hap-
pens on stage, or why something different happened from
what they expected. As a result, Lula’s lighting compo-
nent model is based on a rigorous formal specification. This
specification is the basis for Lula’s internal data representa-
tions, but, more importantly, determines the structure of its
graphical user interface. The uniformity of the specification
is not a guarantee, but a necessary prerequisite and good
indicator for the usability of the interface.

This Paper. The faithful representation of the structure
of lighting looks, described in Sections 2, 3, and 4 is the
main innovation of Lula, and hence the main topic of this
paper. Another central aspect of the system is its treatment
of animated lighting, which builds upon Functional Reactive
Programming, described in Section 5. The paper briefly
reviews substrate considerations in Section 6, and experience
gained in practice in Section 7.

2. BUILDING CUES
Consider the hierarchical structure of the lighting looks as

suggested by the play as shown in Figure 2. The sofa, for ex-
ample, has three fixtures pointing at it hooked to electrical
channels 7, 14, and 23, at some specified intensity. Simi-
larly, the ellipses under the other basic components stand
for some combinations of electrical channels and the intensi-
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Figure 2: Partial cue structure of Doctor Love.

ties of their fixtures. The “Lab tables” components has two
subcomponents, each of which itself consists of subcompo-
nents. The hierarchy builds up with the “Basic” components
for the basic stage look, and the “Sunrise” look consisting
of a dimmed version of “Basic” and added “Sun” lighting,
and the “Evil Laugh” look which features the Frankenstein
footramp and again dimmed basic lighting.

The resulting structure of the lighting components is a di-
rected acyclic graph, and it is desirable that a lighting design
system support manipulating such graphs. Lula calls static
lighting components cues (a somewhat unfortunate term in
retrospect, but it has stuck). The simplest cues represent
single electrical channels. More complex cues consist of sev-
eral subcues which might themselves have more structure.
In lighting designs more realistic than the example presented
here, the dag is often significantly deeper.

Note that cues correspond to conceptual entities in the
lighting design rather than “implementation details” like
what fixture performs what function or to which electrical
circuit it is connected. Fixtures occur only at the leaves of
the dag structure. Above the leaf level, the dag is indepen-
dent of the concrete stage. This is an essential step forward
from current commercial systems which ignore the structure
and represent only the individual parameter settings

The example design above involves only one single, addi-
tive operator for cue composition: The fixtures involved in
lighting the “Lab tables” cue are the union of the fixtures
in “DS Lab tables” and “US Lab tables” at their respec-
tive intensities. If both component cues share a fixture, the
compound cue has the fixture at the maximum of the in-
tensities in the component cues, a principle called Highest
Takes Precedence or HTP in the industry.

Two other combinators besides HTP have proven useful
for cue construction in practice:

• Cue subtraction removes a set of fixtures from a cue.
This is useful when talking about cues that result from
other cues by taking parts away: “The entire stage
without the upstage-left corner,” for example.

• Cue restriction combines two component cues in a
similar way as HTP does, but behaves differently for
shared fixtures: one of the two cues has precedence for
specifying the intensities of shared fixtures. This oc-
curs in situations like “The entire stage, but with the
kitchen table darker than the rest.”

The cue language is effectively a domain-specific language
(DSL) [22]. It has methodological similarities to Haskore [12]
and recent work in using combinator languages to describe
financial contracts [13].



2.1 Simple Cue Terms
Initially, it is easiest to consider a setting with exclusively

theatrical fixtures which only have intensity control. How-
ever, the concepts presented here extend straightforwardly
to multi-parameter fixtures. Section 4 shows how.

The basic algebra for cues builds on three primitive sorts:
The cue sort is for cues themselves. factor represents a
scalar factor; the scale function uniformly scales the inten-
sity of a cue. Moreover, fixture represents a fixture, with an
assumed constant for every fixture. Here is a signature for
the operations on cues:

fromfixture : fixture → cue
scale : factor × cue → cue
black : cue
t : cue × cue → cue
( : cue × cue → cue
\ : cue × cue → cue

The black cue denotes darkness. The scale function scales
the intensity of a cue by some factor. (Presumably, the
signature would also contain constructors for factor values.
These were omitted for brevity.)

The fromfixture constructor converts a fixture into a cue
containing only that fixture at maximum intensity. The
combinators t , ( , and \ are HTP, restriction, and
cue difference, respectively.

2.2 Carrier Sets for Cues
Ultimately, the goal is to construct an equational specifi-

cation for the cue operators in the previous section. Since
the cue operators originate from the application domain
where they already have fixed semantics, I first formalize the
semantics, and backtrack from there to the specification.

A cue conceptually consists of a set of fixtures that are
part of the cue, and intensities for these fixtures. The “cue
contains fixture” notion is explicit: The model distinguishes
between a cue c which does not contain some fixture f and
a cue c′ which differs from c only by including f at zero
intensity. The resulting algebra is called A0.

An intensity is a non-negative real number, bounded by
some maximum value M :

I := R0,+
≤M

Its carrier set A0
fixture for fixture contains elements for all

fixtures. A0
cue is a set with:

A0
cue ⊆ P(A0

fixture)× (A0
fixture Ã I)

A0
fixture Ã I is the set of partial functions from A0

fixture to
I. A cue must define intensities for exactly the fixtures it
contains. Hence, A0

cue is the largest set fulfilling the above
condition as well as:

(F, p) ∈ A0
cue ⇐⇒ F = dom(p).

Factors are non-negative real numbers:

A0
factor := R0,+

2.3 Semantics of Cues
The next step in constructing A0 is assigning meaning to

its constants and operators. The black cue is easiest:

blackA
0

:= (∅,∅)

The fromfixture constructor assembles a cue from a single
fixture at its maximum intensity:

fromfixtureA
0

(f) := ({f}, {f 7→M})
The scale function scales all fixtures in a cue uniformly:

scaleA
0

(µ, (F, p)) := (F, p′) where p′(f) := min(µ · p(f),M)

The HTP combinator merges the fixtures involved, and as-
signs maximal intensities:

(F1, p1) tA0

(F2, p2) := (F1 ∪ F2, p)

where p(f) :=





p1(f) for f 6∈ F2

p2(f) for f 6∈ F1

max(p1(f), p2(f)) otherwise

Restriction also merges the fixtures involved, but gives prece-
dence to the intensities of the second cue:

(F1, p1)( A0

(F2, p2) := (F1 ∪ F2, p)

where p(f) :=

{
p1(f) for f 6∈ F2

p2(f) otherwise

The difference combinator is the set-theoretic difference be-
tween the fixtures contained in the operand cue:

(F1, p1) \A0

(F2, p2) := (F1 \ F2, p1|F1\F2
)

3. AXIOMS AND THEOREMS FOR CUES
The A0 algebra has a number of pleasant properties which

will form an axiomatic basis for the specification. The proofs
of the axioms and theorems presented are straightforward
and have been omitted for brevity [21]. Here are the three
most immediate axioms1:

3.1 Axiom
HTP is commutative and associative.

3.2 Axiom
HTP and restriction are idempotent. For every cue c:

c tA0

c = c

c( A0

c = c

3.3 Axiom
For any cue c:

c tA0

blackA
0

= c (1)

c( A0

blackA
0

= c (2)

black(A0

c = c (3)

c \A0

blackA
0

= c (4)

blackA
0 \A0

c = blackA
0

(5)

c \A0

c = blackA
0

(6)

1They are called axioms here because they are axioms in
the resulting specification. At this point, they still require
proofs of their validity in A0. The theorems, in contrast, are
exclusively derived from the axioms.



Restriction is expressible in terms of HTP and difference:

3.4 Lemma
For any cues a and b:

a( A0

b = (a \A0

b) tA0

b

Moreover, \ and t have some of the properties of their set-
theoretic counterparts:

3.5 Axiom
The following equations hold for all cues a, b, and c:

(a tA0

b) \A0

c = (a \A0

c) tA0

(b \A0

c) (7)

a \A0

(b tA0

c) = (a \A0

b) \A0

c (8)

(a \A0

b) \A0

c = (a \A0

c) \A0

b (9)

(a \A0

b) \A0

c = (a \A0

(b \A0

c)) \A0

c (10)

3.6 Theorem
Restriction is associative. For all cues a, b, and c:

a( A0

(b( A0

c) = (a( A0

b)( A0

c

3.7 Theorem
Restriction left-distributes over HTP. For cues a, b, c:

(a tA0

b)(A0

c = (a(A0

c) tA0

(b(A0

c)

Note that restriction does not right-distribute over HTP.
Finally, a number of trivial axioms concern the interaction

of scaling with the various cue combinators:

3.8 Axiom
For any factor µ and cues a and b:

scale(µ, black) = black (11)

scale(µ, a t b) = scale(µ, a) t scale(µ, b) (12)

scale(µ, a( b) = scale(µ, a)( scale(µ, b) (13)

scale(µ, a \ b) = scale(µ, a) \ b (14)

3.1 Differentiating Cues and Fixture Sets
The definition of cue difference is somewhat ugly: it im-

plicitly disregards the intensity specifications of its second
argument, treating it as a mere set of fixtures. Making the
distinction between a cue and its fixture set explicit yields
another cue operator: the complement. For a cue c, the
complement yields a cue which contains exactly those fix-
tures not contained in c. Besides making the specification
slightly more pleasant, this step also has practical bearing
on the use of the specification for the construction of Lula’s
graphical user interface, as I will show later.

The new signature for cue terms includes an new sort
fixtureset for fixture sets:

fromfixture : fixture → cue
scale : factor × cue → cue
black : cue
t : cue × cue → cue
( : cue × cue → cue
↓ : cue → fixtureset

: fixtureset → fixtureset
\ : cue × fixtureset → cue

The natural algebra for this signature, A1, is a straightfor-
ward modification of A0. Here are the differences between
the two: First off, fixture sets are sets of fixtures:

A1
fixtureset := P(A1

fixture)

Cue abstraction extracts the first component from a cue:

↓A0

(F, p) := F

The complement has the set-theoretical interpretation:

F := A1
fixture \ F

Thus, subtracting the complement of c, c, works like apply-
ing a stencil.

Double complement is the identity on fixture sets:

3.9 Axiom
For any fixture set F , the following holds:

F = F

The semantics of the difference operator needs to reflect the
change in signature:

(F1, p1) \A1

F2 := (F1 \ F2, p1|F1\F2
)

To avoid overly complicating the presentation and having to
rewrite all terms involving differences, cue abstraction will
sometimes be implicit from here on. With this notational
agreement, all axioms of Section 3 hold as before. In A1,
another axiom holds:

3.10 Axiom
For cues a, b, and c, the following equation holds:

a \A1

(b \A1

c) = (a \A1

b) tA1(a \A1

c)

Actually, it would be easier to make statements about differ-
ence if the intersection operator from set theory were avail-
able. However, intersection does not have clear intuitive
meaning when applied to lighting. Section 3.2 contains more
discussion of this issue.

3.2 A Domain-Theoretic Interpretation of Cues
Denotational semantics uses partial orderings on the el-

ements of semantic domains to distinguish the amount of
information they contain [10]. From a conceptual stand-
point, lighting works in a similar way: the more light there
is on stage, the more is visible to the audience.

Consequently, it is possible to define an ordering on cues,
induced by the HTP operator:

a v b :⇐⇒ a t b = b

The meaning of thev operator becomes clearer when related
to the semantics:

(F1, p1) vA1

(F2, p2) :⇐⇒
F1 ⊆ F2 and p1(f) ≤ p2(f) for all f ∈ F1

Thus, a v b means that all fixtures contained in a are also
contained in b and shine at least as bright as in b. Therefore,
a v b is pronounced “a is at least as dark as b” or “b is at
least as bright as a.”

3.11 Theorem
v is a partial order.



This makes t a least upper bound. It is possible to drive the
analogy between cues and semantic domains even further:

3.12 Theorem
Cues form a complete partial order in A1: every ω-chain in

A1
cue has a least upper bound.

Here is another straightforward correspondence of the cue
algebra with semantic domains:

3.13 Theorem
HTP and restriction are continuous in both arguments.

The relationship with domains ends with the difference op-
erator which is continuous in its first but not in its second
argument. This is hardly surprising as, conceptually, differ-
ence removes information from a cue.

Note also that fixture sets are a natural abstraction of
cues in a domain-theoretic sense—cues and fixture sets form
a Galois connection [10].

The domain-theoretic interpretation of cues has no great
relevance in the intensity-only setting. However, it is a
crucial ingredient in formulating the extension to multi-
parameter fixtures.

4. MULTI-PARAMETER FIXTURES
The equational specification so far is surprisingly specific

to fixtures which allow intensity control only. Non-intensity
parameters require a more elaborate treatment, both in the
implementation and in the formal specification. There are
two reasons for this:

• Intensity is qualitatively different from other parame-
ters: If the intensity is zero, no change to any of the
other parameters is visible. On the other hand, every
change in intensity is visible, at least in principle.

• Even though most numeric parameters do have a lim-
ited parameter range, they mostly do not have an ev-
ident ordering. (Is a color a with a higher proportion
of red than another color b larger or smaller?)

Applying the semantic view to a lighting installation with
multi-parameter light helps find a principle for resolving the
problem. This principle translates fairly directly into a new
algebraic specification for cues.

The domain-theoretic interpretation of cues assumes that,
for any two cues a and b, a least upper bound a t b exists:
a t b is a cue which reveals everything a and b reveal. a t b
is at least as bright as both a and b.

This view is not powerful enough for handling multi-pa-
rameter fixtures: Even though every fixture in a cue a might
be brighter than every fixture in cue b, the fixtures might
point in different directions, therefore revealing some other
thing entirely, and leaving the target of a in the dark.

The specification of different settings for a non-intensity
parameter in the same cue term is called a conflict . Such cue
terms do not correspond to well-defined parameter settings.
Consequently, two cues a and b containing multi-parameter
fixtures can only be comparable if the non-intensity param-
eters of all fixtures included in a and b have the same set-
tings. This means that not all pairs of cues have least upper
bounds. Furthermore, not all pairs of cues have HTPs: atb
does not exist if a and b share fixtures with different settings
for non-intensity parameters.

Thus, the domain-theoretic interpretation yields a precise
notion of conflicts. This is in sharp contrast with existing
lighting control systems which do not notify the user of con-
flicts at all, and only offer ad-hoc mechanisms for resolving
them. In contrast, Lula informs the user when she tries to
introduce a conflict into the cue hierarchy, and gives (based
on the specification below) detailed information about the
source of the conflict.

In the absence of conflicts, all results from the intensity-
only case carry over to multi-parameter fixtures.

4.1 Modelling Parameter Transformations
Besides the issue of conflict, the introduction of multi-

parameter fixtures requires generalizing the notion of scal-
ing to arbitrary transformations of parameters. Intensity
scaling stands for a function from intensity values to inten-
sity values. Similarly, all transformations represent function
from parameter values to parameter values. Here are some
examples beside intensity scaling:

Color Set A color-set transformation sets the color of all
fixtures in a cue that allow color control.

Pan/Tilt Set A pan/tilt-set transformation sets the pan
and tilt parameters of all moving lights of a cue.

X/Y/Z Set An X/Y/Z-set transformation sets stage coor-
dinates for the moving lights of a cue to focus on.

X/Y/Z Offset An X/Y/Z-set transformation moves the
light beams of moving lights by an offset in the hori-
zontal plane at the specified Z coordinate. This is use-
ful, for example, to correct light positioning on dancers
with a preprogrammed choreography.

Each transformation is specific to a certain parameter, and
applies uniformly to all the fixtures in a cue.

As the operator assembles cues by applying transforma-
tions and applying the cue combinators, transformations ac-
cumulate in two different ways:

Composition arises when a transformed cue is transformed
again: the two transformations compose functionally.

Juxtaposition arises from the HTP combination of two
cues which contain a common fixture. For two in-
tensity transformations, juxtaposition produces their
least upper bound. For non-intensity parameters, jux-
taposition is only meaningful in the absence of con-
flicts.

The introduction of these two concepts justifies separating
out the specification of transformations into their own spec-
ification. The next subsection shows how composition and
juxtaposition interact with the cue combination operators.

The signature for transformations only supports param-
eters for intensity and pan/tilt. However, adding further
parameters is completely analogous. The signature differen-
tiates between sorts for specific transformations for intensity
and pan/tilt—itrafo and pttrafo and general transformations
trafo.

The ◦ operators are composition operators for transfor-
mations of individual parameters. ‖ is for juxtaposition
of intensity transformations. A transformation in trafo is
conceptually a tuple of an intensity transformation and a
pan/tilt transformation: the # operator assembles one from
its components. The ¦ operator composes two transforma-
tions; ? is for juxtaposition.



scale : factor → itrafo
εitrafo : itrafo
◦itrafo : itrafo × itrafo → itrafo
‖ : itrafo × itrafo → itrafo

pan/tilt : angle × angle → pttrafo
εpttrafo : pttrafo
◦pttrafo : pttrafo × pttrafo → pttrafo

# : itrafo × pttrafo → trafo
¦ : trafo × trafo → trafo
? : trafo × trafo → trafo

Juxtaposition is conceptually a partial function; hence, it
uses a special exception value notrafo in the trafo sort trafo.

Presumably, the scale constructor builds intensity-scale
transformations from scale values, pan/tilt constructs trans-
formations that set pan/tilt from two angle values. More-
over, εitrafo and εpttrafo are special constants meaning “no
intensity (or no pan/tilt, respectively) transformation spec-
ified.”

Transformations obey the following laws:

εitrafo ◦itrafo i = i
i ◦itrafo εitrafo = i
εpttrafo ◦pttrafo p = p
p ◦pttrafo εpttrafo = p
(i1#p1) ¦ (i2#p2) = (i1 ◦itrafo i2)#(p1 ◦pttrafo p2)

εitrafo ‖ i = i
i1 ‖ i2 = i2 ‖ i1
(i1#εpttrafo) ? (i2#p) = (i1 ‖ i2)#p
t1 ? t2 = t2 ? t1
p1 6= εpttrafo , p2 6= εpttrafo =⇒ (i1#p1) ? (i1#p2) = notrafo

The propagation of the notrafo exception value is implicit.
It may seem strange that the specification does not al-

low composing two identity pan/tilt transformations. This
restriction reflects Lula’s user interface which distinguishes
between the absence of a transformation and the presence of
an identity transformation. Otherwise, the user could create
a conflict simply by operating the slider associated with a
pan/tilt transformation, which is not desirable.

Finding an algebra A2 for this equational specification is
straightforward: transformations are functions with special
values for the ε constructors added.

Intensity transformations are mappings from intensities
to intensities plus a bottom value. The ε constructors cor-
respond semantically to bottom values, hence the symbols
chosen for A2:

A2
itrafo := (I→ I) + {⊥pttrafo}
εitrafo := ⊥itrafo

A2 uses distinguished values for the ε constructors rather
than the identity on the associated parameters. This in
turn is to reflect the conflicts of the specification in the
model which also is the basis for conflict detection in the
implementation in Lula.

The scale function applies an intensity transformation in
A1 receives a new meaning in A2: it turns a factor into a
function which scales intensity values:

scaleA
2

(µ)(i) := min(µ · i,M)

The definition of A2
pttrafo is analogous to that of A2

itrafo : A
pan/tilt setting consists of two angles.

A2
angle := R0,+

≤2π

A2
pttrafo := ((A2

angle ×A2
angle)→ (A2

angle ×A2
angle)) + {⊥pttrafo}

εpttrafo := ⊥pttrafo

The pan/tilt operator constructs a constant function:

pan/tiltA
2

(ap, at) := ̂(ap, at)

For non-bottom intensity transformations i1 and i2 or pan/
tilt transformations p1 and p2, composition is simply func-
tional composition:

i1 ◦A
2

itrafo i2 := i1 ◦ i2
p1 ◦A

2

pttrafo p2 := p1 ◦ p2

As an aside, note that, even if scaling is the only transfor-
mation available for intensities, it is not possible to repre-
sent a scaling transformation by its factor, and thus achieve
composition of two intensity-scaling transformation by mul-
tiplication of their factors. To see why, consider the cue
term:

apply(scale(0.5), apply(scale(2), fromfixture(f)))

Composition by factor multiplication would pleasantly re-
duce this to:

apply(scale(1), fromfixture(f))

and, hence, fromfixture(f). Unfortunately, this is wrong:
There is no such thing as “double maximum intensity” for a
real fixture. Hence, apply(scale(2), fromfixture(f)) is equiv-
alent to fromfixture(f) in a faithful model. Compositionality
really does require that the example term has f only at half
the maximum intensity.

To get back to defining compositions for intensity and
pan/tilt transformations, the two bottoms are neutral with
respect to composition as in the specification:

i ◦A2

itrafo ⊥itrafo := i

⊥itrafo ◦A
2

itrafo i := i

p ◦A2

itrafo ⊥pttrafo := p

⊥itrafo ◦A
2

pttrafo p := p

Intensity transformations allow juxtaposition via forming
the least upper bound:

(i1 ‖ i2)(v) := max(i1(v), i2(v))



Finally, a transformation really is a tuple of an intensity

and a pan/tilt transformation. Also, trafoA
2

contains an
exception element called Ã trafo :

A2
trafo := (itrafo × pttrafo) + {Ã trafo}

notrafoA
2

:= Ã trafo

Composition of two transformation works by pointwise com-
position and must take care to preserve exceptions:

(i1, p1) ¦A2

(i2, p2) := (i1 ◦A
2

itrafo i2, p1 ◦A
2

pttrafo p2)

Ã trafo ¦A
2

t := Ã trafo

t ¦A2 Ã trafo := Ã trafo

Juxtaposition also works as in the specification:

(i1,⊥pttrafo) ?A
2

(i1, p) := (i1 ‖A
2

i2, p)

(i1, p) ?
A2

(i1,⊥pttrafo) := (i1 ‖A
2

i2, p)

(i1, p1) ?A
2

(i1, p2) := Ã trafo for p1, p2 6= ⊥pttrafo

Ã trafo ?
A2

t := Ã trafo

t ¦A2

?Ã trafo := Ã trafo

4.2 Modelling Multi-Parameter Cues
The new signature for cues with pan/tilt fixtures is an

extension of the signature for transformations. The parts
not related to the application of an intensity scale are largely
unchanged.

Dealing with conflicts requires considerably more elabo-
ration on the semantics of cues on the part of the specifi-
cation:a conflict happens at the level of a parameter setting
for a single fixture, so the specification needs to define how
cues define parameter settings.To this end, the signature has
a new sort setting . A setting is an association of a fixture
with a transformation.

In the new signature, at setting has, for a fixture f and a
transformation t, the form f@t, pronounced “f is at t.”

The ↪→ operator relates a cue c with a setting s: c ↪→ s
means that c specifies a setting s. The pronunciation of
c ↪→ f@t is “c has f at t.” Here is the signature:

@ : fixture × trafo → setting
↪→ : cue × setting → bool

fromfixture : fixture → cue
apply : trafo × cue → cue
black : cue
t : cue × cue → cue
( : cue × cue → cue
↓ : cue → fixtureset

: fixtureset → fixtureset
\ : cue × fixtureset → cue

Here is an equational specification for the new operators:

apply(t, black) = black
apply(t, a t b) = apply(t, a) t apply(t, b)
apply(t, a( b) = apply(t, a)( apply(t, b)
apply(t, a \ b) = apply(t, a) \ b
apply(t1, apply(t2, c)) = apply(t1 ¦ t2, c)
apply(t, fromfixture(f)) ↪→ f@t
a ↪→ f@t1 ∧ b ↪→ f@t2 =⇒ (a t b) ↪→ f@(t1 ? t2)
a ↪→ f@t1 ∧ ¬(∃t2.b ↪→ f@t2) =⇒ (a t b) ↪→ f@t1
b ↪→ f@t =⇒ (a( b) ↪→ f@t
a ↪→ f@t1 ∧ ¬(∃t2.b ↪→ f@t2) =⇒ (a( b) ↪→ f@t1
a ↪→ f@t1 ∧ ¬(∃t2.b ↪→ f@t2) =⇒ (a \ b) ↪→ f@t1

The rules for apply look much like the rules for scale in
the old specification. However, there is an additional rule
explaining the composition of transformations in terms of
composition of its components.

The rules for apply are able to propagate transformations
to the leaves of a cue term, the fromfixture terms. More-
over, the composition rule for apply allows squashing several
nested transformations into one.

In turn, the ↪→ relation infers an obvious setting for a fix-
ture from a leaf term of the form apply(t, fromfixture(f)).
The other rules propagate settings upwards inside compound
cues. This upwards propagation works only through the reg-
ular cue combinators, not through transformation applica-
tions. Hence, inferring setting information for the fixtures
contained in a cue means first pushing the transformations
inwards, squashing them there and inferring setting infor-
mation for the fixture leaf nodes, and then propagating the
settings back outwards.

Building an algebra A2 for the specification is more in-
volved than the construction of A1. First off, A2 includes
A1 unchanged. The construction of the cue carrier must
map fixtures to transformations instead of intensities as in
A1. A well-defined cue must only have defined transforma-
tion. An exceptional transformation, when part of a cue,
produces an exceptional cue. The new A2

cue is a set with:

A2
cue ⊆ (P(A2

fixture)× (A2
fixture Ã (A2

trafo \ {Ã trafo})) + {Ã cue}

As above, A2
cue must also fulfill the following condition:

(F, p) ∈ A2
cue ⇐⇒ F = dom(p).

The black cue has the same meaning as before:

blackA
2

:= (∅,∅)

A single-fixture cue has only an undefined transformation
associated with it:

fromfixtureA
2

(f) := ({f}, {f 7→ (⊥itrafo ,⊥pttrafo)})

The setting constructor @ is simple tupling:

A2
setting := A2

trafo

f@t := (f, t)

Application of a transformation treats all fixtures contained
in a cue uniformly:

applyA
2

(t, (F, p)) := (F, p′) with p′(f) := t ¦A2

p(f)

Of the cue combinators, HTP is the most interesting as it



involves the juxtaposition of transformation, and, therefore,
the potential for conflicts:

(F1, p1) tA2(F2, p2) := (F1 ∪ F2, p)

where p(f) :=





p1(f) for f 6∈ F2

p2(f) for f 6∈ F1

p1(f) ?A
2

p2(f) otherwise

This definition is only valid if all p1(f) ?A
2

p2(f) involved
do not produce an exception. If juxtaposition does produce
a transformation exception, the HTP is undefined, signaling
a conflict:

(F1, p1) tA2(F2, p2) := Ã cue

if there is an f ∈ F1 ∩ F2 with p1(f) ?A
2

p2(f) = Ã trafo

Restriction and difference basically work as before:

(F1, p1)( A0

(F2, p2) := (F1 ∪ F2, p)

where p(f) :=

{
p1(f) for f 6∈ F2

p2(f) otherwise

(F1, p1) \A0

(F1, p1) := (F1 \ F2, p|F1\F2
)

Relating settings to cues is straightforward in A2:

(F, p) ↪→A2

(f, t) :⇐⇒ f ∈ F and p(f) = t

4.1 Theorem
A2 is a model of the equational specification.

4.3 A Graphical User Interface for Cues
Naturally, ordinary users prefer not to deal with algebraic

constructs. Therefore, Lula offers a simple graphical user
interface for constructing and editing cues. This is made
possible by another algebraic result about the equivalence
of cue terms to terms with bounded height:

4.2 Definition
Assume constants c1, . . . , cn : cue. An atom is either one
of the ci or a term of the form fromfixture(f) for a fixture
constant f .

A flat cue term has the following form:

n⊔

i=1

si

where each of the si is either an atom or has one of the
following two forms:

a1( a2( . . .( ani with a1, . . . , ani atoms

a1 \ â2 · · · \ âni with a1, . . . , ani atoms

Each âi is either ai itself or its complement ai. The differ-
ence operator is assumed to be left-associative.

The fundamental result associated with flat cue form is that
every cue term has one:

4.3 Theorem
Again assume has constants c1, . . . , cn : cue. For each cue
term t, there exists a flat cue term t′ equivalent to t. More-
over, it is possible to choose t′ such that it contains the same
atoms as t.

Proof By term rewriting, using the axioms and theorems
of the previous sections. ¤

Figure 3: Cue editor.

Figure 4: Cue editor displaying a restriction page.

Flat cue form, along with other properties such as asso-
ciativity or commutativity, corresponds directly to desirable
properties of a graphical user interface. Hence, the design of
Lula’s editor widget for cues is based directly upon cue flat
form. Figure 3 shows such a cue editor widget. In Lula, each
cue has a name (Sofa in this case, taken from yet another
play) and the user constructs new cues in flat cue form where
each atom in the sense of Definition 4.2 is either a fixture or
another named cue together with a set of transformations.

The white area on the left represents an si subterm, a so-
called page in the terminology of Lula: it is a list box show-
ing the atomic subcues. There are three kinds of pages, HTP,
Restriction, and Difference. The latter two correspond
directly to the form of the si subterms in Definition 4.2; HTP
pages represent terms of the form a1 t a2 t . . . t ani This is
in trivial accordance with Theorem 4.3. These terms have
their own page type because HTP is the most common form
of cue combination.

The list box on the right displays available fixtures, the
white box to its left displays a list of already-defined cues;
it is a tree widget, and the user can expand the hierarchical
display by clicking on the little triangles. The cue editor
shows an HTP page with three subcues at different inten-
sities. The slider in the middle changes the intensities of
selected subcues.



Figure 4 shows a cue editor displaying a restriction page.
Here, the first cue has a special role. All subsequent cues
may have a complement operator applied to it: the user can
click on the little box to the left of the Window cue to toggle
the complement.

5. ANIMATING LIGHTING
While cues are the cornerstones of lighting design, they do

not cover the time element in a show: The lighting design
for a theatrical performance usually consists of a sequence of
cues with transitions (so-called fades) between them. How-
ever, the real animated lighting extends far beyond fades
between cues: even in theater, the lighting might have to
change dynamically, concerts often involve animated multi-
parameter fixtures with impressive moving effects.

Lula internally expresses all light changes as animations
in term of Functional Reactive Programming or FRP. Func-
tional Reactive Programming is a programming technique
for representing values that change over time and react to
events. It is suitable for a wide range of applications, among
them graphics animations as pioneered by Elliott’s Fran sys-
tem [2], graphical user interfaces [19], and robotics [16]. As
it turns out, it is also applicable to animated lighting.

For constructing complex animations, the user has direct
access to FRP via a built-in domain-specific programming
language called Lulal , a restricted dialect of Scheme. Lulal
allows the construction of reusable components for anima-
tions which are accessible through a simpler graphical user
interface, enabling even non-programmers to design their
own animations. This section builds on the terminology of
FRP [2].

5.1 Presets
Lighting animations build upon cues as their static com-

ponents. Procedurally, the user constructs a library of cues
with the graphical user interface presented in the previous
section, and then uses these as the building blocks for ani-
mated lighting. A lighting animation can create looks that
do not correspond to any cue the user has created: many
animation operators, such as fades, have no counterpart in
the cue language. Moreover, offering the HTP operator in
the animation language is dangerous, as it may lead to un-
predictable conflicts at inopportune times. Therefore, the
primitive static entity in Lulal is not the cue, but the preset.
Just like a cue, it specifies fixture parameter settings, and
every cue is also a preset. Presets differ from cues in the set
of operations available for their construction.

The key ingredient for the representation of animated
lighting is the preset behavior, a specialized representation
for presets changing over time. Lulal offers a rich algebra
for constructing preset behaviors, as well as traditional re-
striction and difference operators on presets, but no HTP.

5.2 The Lulal Language
Lulal is a higher-order, purely functional, strongly typed

language with parametric polymorphism. Lulal’s syntax is
mostly borrowed from Scheme [14]. As its semantics also
builds upon Scheme, the description of Lulal in the section
is brief and focuses on the differences.

The design of Lulal makes a number of departures from
Scheme syntax and semantics which gear Lulal more specif-
ically towards its use in an end-user application. Most of
them are restrictions on Scheme semantics to prevent an
average user from making unnecessary mistakes. Here is a
summary of the changes:

• No side effects.

• Explicit recursion is not allowed.

• Lulal is strongly typed. Its type system is a modified
version of the popular Hindley/Milner system [1]. This
restricts expressiveness somewhat, but catches many
common programming errors before the actual show.

• The language allows a limited form of overloading of
constant values with constant behaviors.

• Lulal has additional syntax for dealing with the task
monad, similar to Haskell’s do notation [11].

• Cues are predefined objects in Lulal, represented by a
string literal containing its name.

Lulal’s value domain includes behaviors, events, and tasks
for constructing reactive values. To simplify the work of the
programmer, Lulal allows a limited form of overloading: a
value of a base time is also overloaded as the correspond-
ing constant behavior. This results in a programming style
similar to programming Fran animations in Haskell [2].

Tasks represent actions to be done in the reactive frame-
work: a task defines a preset behavior as well as a time at
which it ends.

Tasks form a monad [23], a special value domain for repre-
senting computations. Lulal’s use of monads for represent-
ing tasks is similar to the one in used in Monadic Robotics
[16]. Lulal supports the usual monadic combinators return

and bind as well as a Haskell-do-like sequence operator.
Within the monad, the Lulal semantics propagate two val-
ues: the start time of a task’s action as well as the preset
defined by the previous action at its end.

FRP Primitives. Lulal’s basic facilities for FRP are similar
to Fran’s: it has lifted versions of the standard numerical op-
erations, integral and derivative behaviors, a primitive time

behavior, and time transformation.
Moreover, the user has access to the usual FRP event alge-

bra with primitive event constructors from alarm times and
GUI components, as well as the usual event-handling com-
binators, the usual switcher and stepper procedures for
converting events into behaviors, as well as event merging.

Preset Behaviors. In an animated setting, presets gener-
alize naturally to preset behaviors. In Lulal, cues define the
primitive preset behaviors. A string literal is implicitly a ref-
erence to a cue. The behavior associated with a cue changes
its value whenever the user modifies the cue. Lulal con-
tains a subset of the primitives available for cue construc-
tion: restrict-with is the lifted restriction operator, and
subtract is the lifted difference.

Transformation Behaviors. A Lulal program can obtain
new lighting animations by applying transformation behav-
iors to preset behaviors. A number of constructors for such
transformations are available:



Intensity Lulal treats behaviors of reals as intensity trans-
formation behaviors.

Pan/tilt The pan/tilt constructor builds a pan/tilt trans-
formation behavior from a tuple of two behaviors of
reals, specifying the pan and tilt angles, respectively.
It is also possible to construct a pan/tilt transforma-
tion behavior from three Cartesian coordinate behav-
iors via a constructor called xyz. Xyz-offset creates
a behavior which shifts the target of a light beam in
a specified horizontal plane by two behaviors of the X
and Y coordinates.

Color A number of constructors are available for making
color transformation behaviors from behaviors speci-
fying the RGB, HSV, or CMY components.

Applying Transformations. A number of combinators cre-
ate new preset behaviors by combining transformation be-
haviors with preset behaviors: the result is a preset behavior
resulting from the application of the values of the transfor-
mation behavior to those of the preset behaviors. Scale

scales the intensity of a preset behavior by a real behavior.
With-pan/tilt applies the pan/tilt transformations result-
ing from a pan/tilt transformation behavior; with-color

does the same with a color transformation behavior.

5.3 Tasks
Tasks are the top-level entities in Lulal relevant to the

user: When the user specifies an action that triggers an ani-
mation, she must specify a task defined by the Lulal program
which describes the animation.

A task defines a preset behavior as well as an event whose
first occurrence signals completion of the action of the task.
The user can combine arbitrary preset behaviors with events
to form tasks. In addition, Lulal provides fades as primitive
tasks. The user can combine tasks by sequencing or running
the actions side-by-side.

5.4 Example
Consider the following lighting assignment: A moving

light follows an actor on stage. Another one follows the
first one with a two-second delay. Another one follows with
a four-second delay.

Assume that some sensory equipment is hooked up to the
console which reports the actor’s position. Further assume
the procedure get-position returns a behavior tuple which
reports the X, Y, and Z coordinates of the actor’s head (or
whatever portion of his body should be lit). Here is an
expression yielding an appropriate task:

(let* ((position (get-position))

(later-position

(time-transform position

(delayed time -2.0)))

(even-later-position

(time-transform later-position

(delayed time -2.0))))

(preset-behavior->task

(restrict-with

(with-pan/tilt (xyz position) "Followspot #1")

(restrict-with

(with-pan/tilt (xyz later-position)

"Followspot #2")

(with-pan/tilt (xyz even-later-position)

"Followspot #3")))))

Time is the primitive time behavior. Delayed time-trans-
forms a behavior by shifting it. Preset-behavior->task

directly turns a preset behavior into a task that never ends.

Figure 5: Script editor showing final light fade.

Figure 6: Start of playback.

5.5 Assembling a Show
FRP (or, as a matter of fact, any kind of programming)

is not for every user of a lighting control system. Thus,
it is crucial to make the flexibility afforded by Lulal avail-
able to these user and to the designer of dynamic lighting
components, but hide it from the user who merely wants to
assemble a show from cues, fades and prefabricated pieces.

Figure 5 shows Lula’s script editor. It is essentially a sim-
ple multimedia editor (based directly on powerful compo-
nents already provided by the PLT Scheme system) which
allows pasting events into a script. An event corresponds
to an event on stage which requires a coordinated lighting
change.



Figure 5 shows the final lighting event of a simple show, a
fade-to-black which takes 8 seconds. Each event can triggle
multiple lighting changes simultaneously, arranged sequen-
tially or in parallel.

Since the multimedia editor allows including ordinary text
and images, it can, for example, hold the playscript of a the-
atrical production. This has proved to be tremendous ad-
vantage as compared with traditional systems, where light-
ing events carry numbers which the operator needs to coor-
dinate with numbers written in a paper version of the script.

Figure 6 shows the beginning of playback during a show:
the script editor splits to show the progress of the lighting
events in the bottom half. Lula offers numerous opportu-
nities for manual intervention: the operator can suspend
lighting changes, interrupt and abort actions as well as slow
down or speed up the animation. Most of the GUI controls
are directly hooked up to FRP components; this has made
the implementation extremely simple.

Figure 7: Effect event in script window.

Figure 7 shows how the user can access programmed ani-
mations written in Lulal: she simply specifies a term which
yields a lighting task.

6. SUBSTRATE CONSIDERATIONS
Lula is written in Scheme and runs top PLT Scheme [4].

The feature set of PLT Scheme makes it suitable for appli-
cation development in general and for Lula in particular:

• concurrent threads of execution,

• a GUI framework portable between X Windows, Mi-
crosoft Windows, and MacOS [7, 6] which includes a
collection of GUI widgets for multimedia editors,

• a higher-order, fully-parameterized module system [5],

• an object system supporting parametric inheritance
via mixins [8],

• the Zodiac framework [15] for building scanners and
parsers for Scheme-like languages.

In particular, multithreading and the portable GUI frame-
work are enabling technologies for applications like Lula.

This combination is still fairly rare in functional-language
implementations. If functional languages are to succeed in
the marketplace, more implementations must provide this
kind of application-level support.

Two aspects of PLT Scheme have proved somewhat more
problematic for Lula:

• PLT Scheme uses a non-incremental garbage collec-
tor. Machines have only recently become fast enough
make GC pauses short enough to not cause noticeable
delays during complex lighting animations. (However,
straightforward linear animations runs just fine on a
133-Mhz Pentium.)

• Threads are not particularly lightweight—each thread
takes up about 20kBytes. This precludes some pro-
gramming styles that depend on threads being ex-
tremely cheap (such as the use CML-style synchronous
operations [18]), and some effort was necessary to keep
the number of threads down, particularly in the sam-
pling subsystem and in the user interface.

All in all, however, PLT Scheme has proven an excellent
substrate for the development of Lula.

7. LULA IN PRACTICE
Lula has been in development since 1997. It has since

been in constant use in the University Theater, and has a
number of users there. It has toured with Theater U34,
a local theater outfit, to a number of venues in Tübingen,
Reutlingen, Stuttgart, and Munich. It has also been in use
at Stuttgart State Theater by the lighting designers there.

In theatrical use, Lula drastically cuts down on the time
usually needed for programming the control system, often
by a factor of two or more. This is significant since the
time spent on programming the control system is usually
not available for set construction or rehearsal. Moreover,
allows the lighting designer or director to communicate the
structure of the lighting design prior to the on-stage phase.
The time saved immediately translates to better designs.

Lula is especially effective for touring productions: Since
it allows separating the conceptual components of a design
from its implementation, the operator can preserve large
parts of the programming between venues. In this environ-
ment, the use of Lula can dramatically improve the lighting
because the time available on-stage is usually very limited.

The response from users has been uniformly positive. The
University Theater has seen a successful bootstrap of the
system and conducts its own workshops on the use of the
system, taught by operators rather than computer program-
mers. This takes about two hours on the average for groups
of 4–12; after that, the participants are on their own, and
usually do well. Results are especially good when we teach
lighting design in conjunction with the use of the system, as
the principles of both go hand in hand.

Perhaps surprisingly, experienced lighting operators find
it harder to get used to Lula than beginners, mainly because
of their long exposure to traditional lighting control system
and the resulting assumptions about how “a lighting con-
sole works.” They initially try to use Lula as they use a
traditional system, and are disappointed when they see no
significant immediate improvement. These designers need
to see Lula applied to an existing design to see its benefits.

The animated lighting component of Lula is still under
development. We expect similar results in that arena.

8. CONCLUSION
Lula is a powerful system for lighting design and control.

Its main departure from existing systems is its modelling of
the conceptual structure of a lighting design rather than its
implementation. This simplifies input and editing of lighting
designs, and greatly improves the flexibility of the result as
compared with existing systems.



Both design and the implementation have benefited from
the use of advanced software engineering techniques:

• The use of a functional wide-spectrum language has
greatly shortened development time. The first proto-
type of Lula (presented at CeBIT ’97) was finished in
just under a week.

• The rigorous algebraic model for cues and its domain-
theoretic interpretations have been instrumental in cre-
ating a consistent and powerful user interface for cre-
ating and editing cues.

• The embedded DSL approach, pioneered in the func-
tional programming community is pervasive in Lula,
both in the design of the cue algebra and the anima-
tion subsystem.

• Functional Reactive Programming is an ideal technique
for expressing lighting animation.

The outward design of Lula mirrors its internal structure.
Consequently, Lula demonstrates that modern functional

language substrates are eminently suitable for application
development.

Availability. A demo of the current stable Lula system is
available under http://www-pu.informatik.uni-tuebingen.
de/lula/.
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